Video: Encoding and packaging for DVB-I services

There are many ways of achieving a hybrid of OTT-delivered and broadcast-delivered content, but they are not necessarily interoperable. DVB aims to solve the interoperability issue, along with the problem of service discovery with DVB-I. This specification was developed to bring linear TV over the internet up to the standard of traditional broadcast in terms of both video quality and user experience.

DVB-I supports any device with a suitable internet connection and media player, including TV sets, smartphones, tablets and media streaming devices. The medium itself can still be satellite, cable or DTT, but services are encapsulated in IP. Where both broadband and broadcast connections are available, devices can present an integrated list of services and content, combining both streamed and broadcast services.

DVB-I standard relies on three components developed separately within DVB: the low latency operation, multicast streaming and advanced service discovery. In this webinar, Rufael Mekuria from Unified Streaming focuses on low latency distributed workflow for encoding and packaging.

 

The process starts with an ABR (adaptive bit rate) encoder responsible for producing streams with multiple bit rates and clear segmentation – this allows clients to automatically choose the best video quality depending on available bandwidth. Next step is packaging where streaming manifests are added and content encryption is applied, then data is distributed through origin servers and CDNs.

Rufael explains that low latency mode is based on an enhancement to the DVB-DASH streaming specification known as DVB Bluebook A168. This incorporates the chunked transfer encoding of the MPEG CMAF (Common Media Application Format), developed to enable co-existence between the two principle flavors of adaptive bit rate streaming: HLS and DASH. Chunked transfer encoding is a compromise between segment size and encoding efficiency (shorter segments make it harder for encoders to work efficiently). The encoder splits the segments into groups of frames none of which requires a frame from a later group to enable decoding. The DASH packager then puts each group of frames into a CMAF chunk and pushes it to the CDN. DVB claims this approach can cut end-to-end stream latency from a typical 20-30 seconds down to 3-4 seconds.

The other topics covered are: encryption (exhanging key parameters using CPIX), content insertion, metadata, supplemental descriptors, TTML subitles and MPD proxy.

Watch now!

Download the slides.

Speaker

Rufael Mekuria Rufael Mekuria
Head of Research & Standardization
Unified Streaming

Video: CMAF and DASH-IF Live ingest protocol

Of course without live ingest of content into the cloud, there is no live streaming so why would we leave such an important piece of the puzzle to an unsupported protocol like RTMP which has no official support for newer codecs. Whilst there are plenty of legacy workflows that still successfully use RTMP, there are clear benefits to be had from a modern ingest format.

Rufael Mekuria from Unified Streaming, introduces us to DASH-IF’s CMAF-based live ingest protocol which promises to solve many of these issues. Based on the ISO BMFF container format which underpins MPEG DASH. Whilst CMAF isn’t intrinsically low-latency, it’s able to got to much lower latencies than standard HLS, for instance.

This work to create a standard live ingest protocol was born out of an analysis, Rufael explains, of which part of the content delivery chain were most ripe for standardisation. It was felt that live ingest was an obvious choice partly because of the decaying RTMP protocol which was being sloppy replaced by individual companies doing their own thing, but also because there everyone contributing in the same way is of a general benefit to the industry. It’s not typically, at the protocol level, an area where individual vendors differentiate to the detriment of interoperability and we’ve already seen the, then, success of RMTP being used inter-operably between vendor equipment.

MPEG DAHS and HLS can be delivered in a pull method as well as pushed, but not the latter is not specified. There are other aspects of how people have ‘rolled their own’ which benefit from standardisation too such as timed metadata like ad triggers. Rufael, explaining that the proposed ingest protocol is a version of CMAF plus HTTP POST where no manifest is defined, shows us the way push and pull streaming would work. As this is a standardisation project, Rufael takes us through the timeline of development and publication of the standard which is now available.

As we live in the modern world, ingest security has been considered and it comes with TLS and authentication with more details covered in the talk. Ad insertion such as SCTE 35 is defined using binary mode and Rufael shows slides to demonstrate. Similarly in terms of ABR, we look at how switching sets work. Switching sets are sets of tracks that contain different representations of the same content that a player can seamlessly switch between.

Watch now!
Speaker

Rufael Mekuria Rufael Mekuria
Head of Research & Standardisation,
Unified Streaming

Video: Integrating CMAF Into A VOD Workflow

CMAF is often seen as the best hope for streaming to match the latency of broadcast. Fully standards based, many see this as the best route over Apple’s LL-HLS. Another benefit of it over LL-HLS is that it’s already a completed standard with growing support.

This talk from Tomas Bacik starts by explaining CMAF to us. Standing for the Common Media Application Format, it’s based on the standardised ISOBMFF container format and whilst CMAF isn’t by default low-latency, it is flexible enough to deliver just that. However, as Tomas from CDN77 points out, there are other major benefits in terms of its use of the Common Encryption format, reduces storage fees and more.

MPEG DASH is a commonly found streaming format based on ISO BMFF. It has always had the benefit of supporting other codecs such as HEVC and AV1 over HLS which is an AVC-only specification. CMAF is an extension of MPEG DASH which goes one step further in that it can deal with both HLS-style manifest files (.hls) as well as MPEG DASH format (.mpd) inheriting, of course, the multi-codec ability of DASH itself.

Next is central theme of the talk, looking at VoD workflows showing how CMAF fits in and, indeed, changes workflows for the better. CMAF directly impacts packaging, storage and CDN which is where we focus now. Given that some devices can play HLS and some can play DASH, if you try to serve both, you will double your requirements of packaging, storage etc. Dynamic packaging allows for immediately repackaging your chunks into either HLS or DASH as needed. Whilst this reduces the storage requirements, it increases processing and also increases the time to first byte. As you might expect, using CMAF throughout, Tomas explains in this talk, allows you to package once and store once which solves these problems.

Tomas continues by explaining the DRM abilities of CMAF including AES-CBC and finishes by taking questions from the audience.

Watch now!
See Streamflow’s blog post supporting the talk
Speakers

Tomas Bacik Tomas Bacik
VP of Product Development, Streamflow by CDN77
CDN77

Video: Three Roads to Jerusalem

With his usual entertaining vigour, Will Law explains the differences to the three approaches to low-latency streaming: DASH, LHLS and LL-HLS from Apple. Likening them partly to religions that all get you to the same end, we see how they differ and some of the reasons for that.

Please note: Since this video was recorded, Apple has released a new draft of LL-HLS. As described in this great article from Mux, the update’s changes are

  • “Delivering shorter sub-segments of the video stream (Apple call these parts) more frequently (every 0.3 – 0.5s)
  • Using HTTP/2 PUSH to deliver these smaller parts, pushed in response to a blocking playlist request
  • Blocking playlist requests, eliminating the current speculative manifest request polling behaviour in HLS
  • Smaller, delta rendition playlists, which reduces playlist size, which is important since playlists are requested more frequently
  • Faster rendition switching, enabled by rendition reports, which allows clients to see what is happening in another playlist without requesting it in its entirety”[0]

Read the full article for the details and implications, some of which address some points made in the talk.

Anyone who saw last year’s Chunky Monkey video, will recognise Will’s near-Oscar-winning animation style as he sets the scene explaining the contenders to the low-latency streaming crown.

We then look at a bullet list of features across each of the three low latency technologies (note Apple’s recent update) which leads on to a discussion on chunked transfer delivery and the challenges of line-rate delivery. A simple view of the universe would say that the ideal way to have a live stream, encoded at a constant bitrate, would be to stream it constantly at that bitrate to the receiver. Whilst this is, indeed, the best way to go, when we stream we’re also keeping one eye on whether we need to change the bitrate. If we get more bandwidth available it might be best to upgrade to a better quality and if we suddenly have contested, slow wifi, it might be time for an emergency drop down to the lowest bitrate stream.

When you are delivered a stream as individual files, you can measure how long they take to download to estimate your available bandwidth. If a file can be downloaded at 1Gbps, then it should always arrive at 1Gbps. Therefore if it arrives at less than 1Gbps we know that there is a bandwidth restriction and can make adjustments. Will explains that for streams delivered with chunked transfer or in real time such as in LL-HLS, this estimation no longer works as the files simply are never available at 1Gbps. He then explains some of the work that has been undertaken to develop more nuanced ways of estimating available bandwidth. It’s well worth noting that the smaller the files you transfer, the less accurate the bandwidth estimation as TCP takes time to speed up to line rate so small 320ms-length video segments are not ideal for maximising throughput.

Continuing to look at the differences, we next look at request rates with DASH at 20 requests per second compared to LL-HLS at 720. This leads naturally to an analysis of the benefits of HTTP/2 PUSH technology used in LL-HLS and the savings that can offer. Will explores the implications, and some of the problems, with last year’s version of the LL-HLS spec, some of which have been mitigated since.

The talk concludes with some work Akamai has done to try and establish a single, common workflow with examples and a GitHub repository. Will shows how this works and the limitations of the approach and finishes with a look at the commonalities in approaches.

[0] From “Low Latency HLS 2: Judgment Day” https://mux.com/blog/low-latency-hls-part-2/

Watch now!
Speakers

Will Law Will Law
Chief Architect,
Akamai