Video: 5 PTP Implementation Challenges & Best Practices

PTP is an underlying technology enabling the whole SMPTE 2110 uncompressed ecosystem to work. Using PTP, the Precision Time Protocol, the time a frame of video, audio etc. was captured is recorded and so when decoded can be synchronised with other media recorded around that same time. Though parts of 2110 can function without it, when it comes to bringing media together which need synchronisation, vision mixing for instance, PTP is the way to go.

PTP is actually a standard for time distribution which, like its forerunner NTP, was developed by the IEEE and is a cross-industry standard. Now on version IEEE-1588-2019, it defines not only how to send time onto a network, but also how a receiver can work out what the time actually is. Afterall, if you had a letter in the post telling you the time, you’d know that time – and date for that matter – was old. PTP defines a way of working out how long the letter took to arrive so that you can know the date and time based on the letter and you new-found knowledge of the delivery time.

Knowing the time of day is all very well, but to truly synchronise media, SMPTE ST 2059 is used to interpret PTP for professional media. Video and audio are made from repeating data structures. 2059 relates these repeating data structures back to a common time in the past so that at any time in the future, you can calculate the phase of the signal.

Karl Khun from Tektronix starts by laying out the problems to be solved, such as managing jitter and the precision needed. This leads in into a look at how timestamps are used to make a note of when, separately, video and audio were captured. The network needed to implement PTP, particularly for redundancy and the ability of GPS allowing buildings to be co-timed without being connected.

Troubleshooting PTP will be tricky for many, but learning the IT side of this is only part of the solution. Karl looks at some best practices and tips on faultfinding PPT errors which leads on to a discussion of PTP domains and profiles. An important aspect of PTP is that it is bi-directional. Not only that but it’s much more than a distribution of a signal like the previous black and burst infrastructure. It is a system which needs to be managed and deserves to be monitored. Karl shows how graphs can help show the stability of the network and how RTP/CC errors can show network packet losses/corruptions.

Watch now!
Speakers

Karl Kuhn Karl J. Khun
Principal Solutions Architect
Telestream/Tekronix

Video: LCEVC – The Latest MPEG Standard

Video is so pervasive in our world that we need to move past thinking of codecs and compression being about reducing bitrate. That will always be a major consideration, but speed of compression and the computation needed can also be deal breakers. Millions of embedded devices need to encode video which don’t have the grunt available to the live AV1-encoding clusters in the cloud. Further more, the structure of the final data itself can be important for later processing and decoding. So we can see how use-cases can arise out needs of various industries, far beyond broadcast, which mean that codecs need to do more than make files small.

This year LCEVC from MPEG will be standardised. Called Low Complexity Enhancement Video Coding, this codec provides compression both where computing is constrained and where it is plentiful. Guido Meardi, CEO of V-Nova, talks us through what LCEVC is starting with a chart showing how computation has increased vastly as compression has improved. It’s this trend that this codec intends to put an end to by adding, Guido explains, an enhancement layer over some lower-resolution video. By encoding a lower-resolution, computational processing is minimised. When displayed, an enhancement layer allows this low resolution video to be sharpened again to bring it back to the original.

After demonstrating the business benefits, we see the block diagram of the encoder and decoder which helps visualise how this enhancement might be calculated and work. Guido then shows us what the enhancement layer looks like – a fairy flat image with lots of thin edges on it but, importantly, it also captures a lot of almost random detail which can’t be guessed by upsamplers. This, of course, is the point. If it were possible to upscale the low-resolution video and guess/infer all the data, then we would always do that. Rather, downscaling and upscaling is a lossy process. Here, that loss is worth it because of the computational gains and because the enhancement layer will put back much of what was once lost.

In order to demonstrate LCEVC’s ability, Guido shows graphs comparing LCEVC at UHD for x264 showing improvements of between 20 and 45% and image examples of artefacts which are avoided using LCEVC. We then see that when applied to AVC, HEVC and VVC it speeds up encodes at least two fold. Guido finishes this presentation showing how you can test out the encoder and decoder yourself.

The last segment of this video, Tarek Amara from Twitch sits down to talk with Guido about the codec and the background behind it. Their talk covers V-Nova’s approach to open source, licensing, LCEVC’s gradual improvements as it went through the proving process as part of MPEG standardisation plus questions from the floor.

Watch now!
Speakers

Guido Meardi Guido Meardi
CEO & Co-Founder,
V-Nova
Tarek Amara Tarek Amara
Principal Video Specialist,
Twitch

Video: Extension to 4K resolution of a Parametric Model for Perceptual Video Quality

Measuring video quality automatically is invaluable and, for many uses, essential. But as video evolves with higher frame rates, HDR, a wider colour gamut (WCG) and higher resolutions, we need to make sure the automatic evaluations evolve too. Called ‘Objective Metrics’, these computer-based assessments go by the name of PSNR, DMOS, VMAF and others. One use for these metrics is to automatically analyse an encoded video to determine if it looks good enough and should be re-encoded. This allows for the bitrate to be optimised for quality. Rafael Sotelo, from the Universidad de Montevideo, explains how his university helped work on an update to Predicted MOS to do just this.

MOS is the Mean Opinion Score and is a result derived from a group of people watching some content in a controlled environment. They vote to say how they feel about the content and the data, when combined gives an indication of the quality of the video. The trick is to enable a computer to predict what people will say. Rafael explains how this is done looking at some of the maths behind the predicted score.

In order to test any ‘upgrades’ to the objective metric, you need to test it against people’s actual score. So Rafael explains how he set up his viewing environments in both Uruguay and Italy to be compliant with BT.500. BT.500 is a standard which explains how a room should be in order to have viewing conditions which maximise the ability of the viewers to appreciate the pros and cons of the content. For instance, it explains how dim the room should be, how reflective the screens and how they should be calibrated. The guidelines don’t apply to HDR, 4K etc. so the team devised an extension to the standard in order to carryout the testing. This is called ‘subjective testing’.

With all of this work done, Rafael shows us the benefits of using this extended metric and the results achieved.

Watch now!
Speakers

Rafael Sotelo Rafael Sotelo
Director, ICT Department
Universidad de Montevideo

Video: Live Closed Captioning and Subtitling in SMPTE 2110 (update)

The SMPTE ST 2110-40 standard specifies the real-time, RTP transport of SMPTE ST 291-1 Ancillary Data packets. It allows creation of IP essence flows carrying the VANC data familiar to us from SDI (like AFD, closed captions or ad triggering), complementing the existing video and audio portions of the SMPTE ST 2110 suite.

This presentation, by Bill McLaughlin from EEG, is an updated tutorial on subtitling, closed captioning, and other ancillary data workflows using the ST 2110-40 standard. Topics include synchronization, merging of data from different sources and standards conversion.

Building on Bill’s previous presentation at the IP Showcase), this talk at NAB 2019 demonstrates a big increase in the number of vendors supporting ST 2110-40 standard. Previously a generic packet analyser like Wireshark with dissector was recommended for troubleshooting IP ancillary data. But now most leading multiviewer / analyser products can display captioning, subtitling and timecode from 2110-40 streams. At the recent “JT-NM Tested Program” event 29 products passed 2110-40 Reception Validation. Moreover, 27 products passed 2110-40 Transmitter Validation which mean that their output can be reconstructed into SDI video signals with appropriate timing and then decoded correctly.

Bill points out that ST 2110-40 is not really a new standard at this point, it only defines how to carry ancillary data from the traditional payloads over IP. Special care needs to be taken when different VANC data packets are concatenated in the IP domain. A lot of existing devices are simple ST 2110-40 receivers which would require a kind of VANC funnel to create a combined stream of all the relevant ancillary data, making sure that line numbers and packet types don’t conflict, especially when signals need to be converted back to SDI.

There is a new ST 2110-41 standard being developed for additional ancilary data which do not match up with ancillary data standardised in ST 291-1. Another idea discussed is to move away from SDI VANC data format and use a TTML track (Timed Text Markup Language – textual information associated with timing information) to carry ancillary information.

Watch now!

Download the slides.

Speakers

 

Bill McLaughlin Bill McLaughlin
VP of Product Development
EEG