Video: Esports for Broadcasters – CDNs

With massive, often global, online audiences, esports are highly reliant on great CDN strategies. CDNs exist to copy popular files to servers very close to the users. This takes the burden off the encoders at the heart of the stream. But doing this at scale to millions of people is a constant challenge.

Paul Martin from CDN provider Vecima, helps explain the challenges and solutions for esports producers and streaming services alike. Paul outlines the growth in video traffic which paints a positive future for the need for CDNs: 65% streaming growth in 2019, DAZN streamed to over 1 million people 100 times and over the next 5 years, market revenues are forecast to double.

When it comes to scaling, the CDN operates differently to the origination platform. For an esports provider their scale is in programming. The more channels they put out, the more they have to work. A CDN, however, will cache any files that are needed, so it really doesn’t matter whether there are 10 or 1000 assets or channels, the scale goes with the number of people who are accessing the service.

Multiple CDNs: Of course in the real world, providers actually use multiple CDNs to distribute globally. These connections between providers and ISPs are called peering points. There can be a lot of complexity involved with global distribution and some providers are concerned with losing control as their data passes over many third party network infrastructure. This is why many consider moving their own CDN servers into ISPs themselves allowing them more predictable performance and easier capacity expansion.

Paul talks about how this ‘netflix’ model of having your own CDN in ISPs comes into play at high scale and moves on to look at what the important themes are for streaming providers as they move from small startups through to high-scale, high maturity. For each stage, there are clearly definable problems to solve which change with size.

The talk ends with a look to the future and a Q&A talking about what’s monitored in CDNs, WebRTC, 5G and the growth of esports.

Watch now!
Speakers

Paul Martin Paul Martin
VP Marketing, Broadcaster Market Lead,
Vecima

Video: Optimising Video for Everyone at Once

CDNs are all about scale. Their raison d’ëtre is to help you scale, but that’s no trivial task which is why companies like Akamai exist so you only have to concentrate on your core product, for this talk, online streaming. Akamai’s main game is to move content you provide to them to the ‘edge’ of the network, as close to the user as possible.

The pandemic certainly put the CDNs, as well as telcos, through their paces. In this talk, Peter Chave from Akami talks about the challenges in the scale they’re achieving on a day-to-day basis. Whilst it’s lucky that 2020 was due to be a ‘big’ year in terms of sporting events, the Winter Olympics being but one example, meaning that large capacity had already been planned for, the whole industry has been iterating to get things right as the load has shifted and increased.

In March, Akamai saw a years-worth of growth. The shift in traffic was not just in magnitude but also it was a rebalancing of upload vs download. With video conferences and VPNs used all the more, the asymmetrical design of consumer internet services was put to the test.

Peter explains that companies like Netflix volunteered to reduce the burden by reducing bitrates. This was done in two main ways. One was to simply remove the top level from manifests. The other was to update the players to be much more conservative as they worked their way up through the bitrates. It’s also made some companies consider a switch to HEVC or otherwise which, whilst not being immediate, can have the effect of reducing overall bitrates across your service.

The CDN can also adjust the manifest which is much more flexible since, rather than editing a central file, in the edge in certain geographies and at certain times of day, the CDN can adjust the manifests on the fly. Lastly, Peter explains how Akamai have been throttling the speed at which video chunks are served. For times when a person has a lot more available bitrate than it needs for a video, there is no reason for it to download chunks at 100Mbps, so throttling the download speed helps reduce peaks.

Watch now!
Speakers

Peter Chave Peter Chave
Principal Architect,
Akamai Technologies

Video: RIST and Open Broadcast Systems

RIST is a streaming protocol which allows lossy networks such as the internet to be used for critical streaming applications. Called Reliable Internet Stream Transport, it uses ARQ (Automatic Repeat reQuest) retransmission technology to request any data that is lost by the network, creating reliable paths for video contribution.

In this presentation, Kieran Kunhya from Open Broadcast Systems explains why his company has chosen RIST protocol for their software-based encoders and decoders. Their initial solution for news, sports and linear channels contribution over public internet were based on FEC (Forward Error Correction), a technique used for controlling errors in transmission by sending data in a redundant way using error-correcting code. However, FEC couldn’t cope with large burst losses, there was limited interoperability and the implementation was complex. Protecting the stream by sending the same feed over multiple paths and/or sending a delayed version of the stream on the same path, had a heavy bandwidth penalty. This prompted them, instead, to implement an ARQ technique based on RFC 4585 (Extended RTP Profile for Real-time Transport Control Protocol-Based Feedback), which gave them functionality quite similar to the basic RIST functionality.

Key to the discussion, Kieran explains why they decided not to adopt the SRT protocol. As SRT is based file transfer protocol, it’s difficult or impossible to add features like bonding, multi-network and multi-point support which were available in RIST from day one. Moreover, RIST has a large IETF heritage from other industries and is vendor-independent. In Kieran’s opinion, SRT will become a prosumer solution (similar to RTMP, now, for streaming) and RIST will be the professional solution (analogous to MPEG-2 Transport Streams).

Different applications for the RIST protocol are discussed, including 24/7 linear channels for satellite uplink from playout, interactive (two-way) talking heads for news, high bitrate live events and reverse vision lines for monitoring purposes. Also, there is a big potential for using RIST in cloud solutions for live broadcast production workflows. Kieran hopes that more broadcasters will start using spin-up and spin-down cloud workflows, which will help save space and money on infrastructure.

What’s interesting, Open Broadcast Solutions are not currently interested in RIST Main Profile (the main advantages of this profile are support for encryption, authentication and in-band data). Kieran explains that to control devices in remote locations you need some kind of off-the-shelf VPN anyway. These systems provide encryption and NAT port traversal, so the problem is solved at a different layer in the OSI model and this gives customers more control over the type of encryption they want.

Watch now!

Speaker

Kieran Kunhya Kieran Kunhya
Founder and CEO,
Open Broadcast Systems

Video: RIST in the Cloud

Cloud workflows are starting to become an integral part of broadcasters’ live production. However, the quality of video is often not sufficient for high-end broadcast applications where cloud infrastructure providers such as Google, Oracle or AWS are accessed through the public Internet or leased lines.

A number of protocols based on ARQ (Adaptive Repeat reQuest) retransmission technology have been created (including SRT, Zixi, VideoFlow and RIST) to solve the challenge of moving professional media over the Internet which is fraught with dropped packets and unwanted delays. Protocols such as a SRT and RIST enable broadcast-grade video delivery at a much lower cost than fibre or satellite links.

The RIST (Reliable Internet Streaming Transport) protocol has been created as an open alternative to commercial options such as Zixi. This protocol is a merging of technologies from around the industry built upon current standards in IETF RFCs, providing an open, interoperable and technically robust solution for low-latency live video over unmanaged networks.

In this presentation David Griggs from Amazon Web Services (AWS) talks about how the RIST protocol with cloud technology is transforming broadcast content distribution. He explains that delivery of live content is essential for the broadcasters and they look for a way to deliver this content without using expensive private fibre optics or satellite links. With unmanaged networks you can get content from one side of the world to the other with very little investment in time and infrastructure, but it is only possible with protocols based on ARQ like RIST.

Next, David discusses the major advantages of cloud technology, being dynamic and flexible. Historically dimensioning the entire production environment for peak utilisation was financially challenging. Now it is possible to dimension it for average use, while leveraging cloud resources for peak usage, providing a more elastic cost model. Moreover, the cloud is a good place to innovate and to experiment because the barrier to entry in terms of cost is low. It encourages both customers and vendors to experiment and to be innovative and ultimately build more compelling and better solutions.

David believes that open and interoperable QoS protocols like RIST will be instrumental in building complex distribution networks in the cloud. He hopes that AWS by working together with Net Insight, Zixi and Cobalt Digital can start to build innovative and interoperable cloud solutions for live sports.

Watch now!

Speaker

David Griggs
Senior Product Manager, Media Services
AWS Elemental