Video: Live Media Production – The Ultimate End Game

A lot of our time on this website is devoted to understanding the changes we are going through now, but we don’t adopt technology for the sake of it. Where’s this leading and what work is going on now to forge our path? Whilst SMPTE ST 2110 and the associated specifications aren’t yet a mature technology in that sense SDI, we’re past the early adopter phase and we can see which of the industry’s needs aren’t yet met.

Andy Rayner from Nevion is here to help us navigate the current technology space and understand the future he and Nevion envision. The beginning of the video shows the big change in process from the workflows of the 90s where the TV station moved to sports events to now where we bring the event to the broadcaster in the form of a light connectivity truck turning up and deploying cameras at the event leaving most people either at home or back at base doing the production there. Andy has been involved in a number of implementations enabling this such as at Discovery’s Eurosport where the media processing is done in two locations separate from the production rooms around Europe.



Generalising around the Discovery case study, Andy shows a vision of how many companys will evolve their workflows which includes using 5G, public and private clouds as appropriate and including control surfaces being at home. To get there, Andy lays out the work within AMWA and SMPTE creating the specifications and standards that we need. He then shows how the increasing use of IT in live production, the already IT-based NLE workflows are able to integrate much better.

Looking to the future, Andy explains the work ongoing to specify a standard way of getting video into and out of the cloud including specifying a way of carrying 2110 on the WAN, helping RIST and formalising the use of JPEG XS. Andy anticipates a more standardised future where a best of breed system is possible down to individual logical components like ‘video keyer’ and ‘logo insertion’ could be done by separate software but which seamlessly integrate. Lastly, Andy promises us that work is underway to improve timing within 2110 and 2110-associated workflows.

Watch now!

Andy Rayner Andy Rayner
Chief Technologist

Video: Keeping Time with PTP

The audio world has been using PTP for years, but now there is renewed interest thanks to its inclusion in SMPTE ST 2110. Replacing the black and burst timing signal (and for those that used it, TLS), PTP changes the way we distribute time. B&B was a waterfall distribution, PTP is a bi-directional conversation which, as a system, needs to be monitored and should be actively maintained.

Michael Waidson from Telestream (who now own Tektronix) brings us the foundational basics of PTP as well as tips and tricks to troubleshoot your PTP system. He starts by explaining. the types of messages which are exchanged between the clock and the device as well as why all these different messages are necessary. We see that we can set the frequency at which the announce, sync and follow-up messages. The sync and follow-up messages actually contain the time. When a device receives one of these messages, it needs to respond with a ‘delay request’ in order to work out how much of a delay there is between it and the grand master clock. This will result in it receiving a delay response. On top of these basic messages, there is a periodic management message which can contain further information such as daylight savings time or drop-frame information.

Michael moves on to looking at troubleshooting highlighting the four main numbers to check: The domain value, grandmaster ID, message rates and the communication mode. PTP is a global standard used in many industries. To make PTP most useful to the broadcast industry, SMPTE ST 2059 defines values to use for message repetition (4 per second for announce messages, 8 for sync, delay request and delay response). ST 2059 also defines how devices can determine the phase of any broadcast signal for any given time which is the fundamental link needed to ensure all devices keep synchronicity.

Another good tip from Michael is if you see the grandmaster MAC changing between the grandmasters on the system, this indicates it’s no receiving any announce messages so is initiating the Best Master Clock Algorithm (BMCA) and trying the next grandmaster. Some PTP monitoring equipment including from Meinberg and from Telestream can show the phase lag of the PTP timing as well as the delay between the primary and secondary grandmaster – the lower the better.

A talk on PTP can’t avoid mentioning boundary clocks and transparent switches. Boundary clocks take on much of the two-way traffic in PTP protecting the grandmasters from having to speak directly to all the, potentially, thousands of devices. Transparent switches, simply update the time announcements with the delay for the message to move through the switch. Whilst this is useful in keeping the timing accurate, it provides no protection for the grandmasters. He finishes video ends with a look at how to check PTP messages on the switch.

Watch now!

Michael Waidson Michael Waidson
Application Engineer
Telestream (formerly Tektronix)

Video: Monolithic and Spine-Leaf Architectures

It’s hard to talk about SMPTE 2110 system design without hearing the term ‘spine and leaf’. It’s a fundamental decision that needs to be made early on in the project; how many switches will you use and how will they be interconnected? Deciding is not without accepting compromises, so what needs to be considered?

Chris Lapp from Diversified shares his experience in designing such systems. Monolithic design has a single switch at the centre of the network with everything connected directly to it. For redundancy, this is normally complemented by a separate, identical switch providing a second network. For networks which are likely to need to scale, monolithic designs can add a hurdle to expansion once they get full. Also, if there are many ‘low bandwidth’ devices, it may not be cost-effective to attach them. For instance, if your central switch has many 40Gbps ports, it’s a waste to use many to connect to 1Gbps devices such as audio endpoints.

The answer to these problems is spine and leaf. Chris explains that this is more resilient to failure and allows easy scaling whilst retaining a non-blocking network. These improvements come at a price, naturally. Firstly, it does cost more and secondly, there is. added complexity. In a large facility with endpoints spread out, spine and leaf may be the only sensible option. However, Chris explores a cheaper version of spine and leaf often called ‘hub and spoke’ or ‘hybrid’.

If you are interested in this topic, listen to last week’s video from Arista’s Gerard Philips which talked in more detail about network design covering the pros and cons of spine and leaf, control using IGMP and SDN, PTP design amongst other topics. Read more here.

Watch now!

Chris Lapp Chris Lapp
Project Engineer, SME Routing
Wes Simpson Wes Simpson
President, Telcom Product Consulting