Video: How to Deploy an IP-Based Infrastructure

An industry-wide move to any new technology takes time and there is a steady flow of people new to the technology. This video is a launchpad for anyone just coming into IP infrastructures whether because their company is starting or completing an IP project or because people are starting to ask the question “Should we go IP too?”.

Keycode Media’s Steve Dupaix starts with an overview of how SMPTE’s suite of standards called ST 2110 differs from other IP-based video and audio technologies such as NDI, SRT, RIST and Dante. The key takeaways are that NDI provides compressed video with a low delay of around 100ms with a suite of free tools to help you get started. SRT and RIST are similar technologies that are usually used to get AVC or HEVC video from A to B getting around packet loss, something that NDI and ST 2110 don’t protect for without FEC. This is because SRT and RIST are aimed at moving data over lossy networks like the internet. Find out more about SRT in this SMPTE video. For more on NDI, this video from SMPTE and VizRT gives the detail.

 

 

ST 2110’s purpose is to get high quality, usually lossless, video and audio around a local area network originally being envisaged as a way of displacing baseband SDI and was specced to work flawlessly in live production such as a studio. It brings with it some advantages such as separating the essences i.e. video, audio, timing and ancillary data are separate streams. It also brings the promise of higher density for routing operations, lower-cost infrastructure since the routers and switches are standard IT products and increased flexibility due to the much-reduced need to move/add cables.

Robert Erickson from Grass Valley explains that they have worked hard to move all of their product lines to ‘native IP’ as they believe all workflows will move IP whether on-premise or in the cloud. The next step, he sees is enabling more workflows that move video in and out of the cloud and for that, they need to move to JPEG XS which can be carried in ST 2110-20. Thomas Edwards from AWS adds their perspective agreeing that customers are increasingly using JPEG XS for this purpose but within the cloud, they expect the new CDI which is a specification for moving high-bandwidth traffic like 2110-20 streams of uncompressed video from point to point within the cloud.

John Mailhot from Imagine Communications is also the chair of the VSF activity group for ground-cloud-cloud-ground. This aims to harmonise the ways in which vendors provide movement of media, whatever bandwidth, into and out of the cloud as well as from point to point within. From the Imagine side, he says that ST 2110 is now embedded in all products but the key is to choose the most appropriate transport. In the cloud, CDI is often the most appropriate transport within AWS and he agrees that JPEG XS is the most appropriate for cloud<->ground operations.

The panel takes a moment to look at the way that the pandemic has impacted the use of video over IP. As we heard earlier this year, the New York Times had been waiting before their move to IP and the pandemic forced them to look at the market earlier than planned. When they looked, they found the products which they needed and moved to a full IP workflow. So this has been the theme and if anything has driven, and will continue to drive, innovation. The immediate need provided the motivation to consider new workflows and now that the workflow is IP, it’s quicker, cheaper and easier to test new variation. Thomas Edwards points out that many of the current workflows are heavily reliant on AVC or HEVC despite the desire to use JPEG XS for the broadcast content. For people at home, JPEG XS bandwidths aren’t practical but RIST with AVC works fine for most applications.

Interoperability between vendors has long been the focus of the industry for ST 2110 and, in John’s option, is now pretty reliable for inter-vendor essence exchanges. Recently the focus has been on doing the same with NMOS which both he and Robert report is working well from recent, multi-vendor projects they have been involved in. John’s interest is working out ways that the cloud and ground can find out about each other which isn’t a use case yet covered in AMWA’s NMOS IS-04.

The video ends with a Q&A covering the following:

  • Where to start in your transition to IP
  • What to look for in an ST 2110-capable switch
  • Multi-Level routing support
  • Using multicast in AWS
  • Whether IT equipment lifecycles conflict with Broadcast refresh cycles
  • Watch now!
    Speakers

    John Mailhot John Mailhot
    CTO & Director of Product Management, Infrastructure & Networking,
    Imagine Communications
    Ciro Noronha Ciro Noronha
    Executive Vice-President of Engineering,
    Cobalt Digital
    Thomas Edwards Thomas Edwards
    Principal Solutions Architect & Evangelist,
    Amazon Web Services
    Robert Erickson Robert Erickson
    Strategic Account Manager Sports and Venues,
    Grass Valley
    Steve Dupaix Steve Dupaix
    Senior Account Executive,
    Key Code Media

    Video: Cloud Services for Media and Entertainment – Processing, Playout and Distribution

    What are the options for moving your playout, processing and distribution into the cloud? What will the workflows look like and what are the options for implementing them? This video covers the basics, describes many of the functions available like subtitle generation and QC then leads you through to harnessing machine learning,

    SMPTE’s New York section has brought together Evan Statton and Liam Morrison from AWS, Alex Emmermann from Telestream, Chris Ziemer & Joe Ashba from Imagine Communications and Rick Phelps from Brklyn Media to share their knowledge on the topic. Rick kicks off proceedings with a look at the principles of moving to the cloud. He speaks about the need to prepare your media before the move by de-duplicating files, getting the structure and naming correct and checking your metadata is accurate. Whilst deduplicating data reduces your storage costs, another great way to do this is to store in IMF format. IMF, the Interoperable Media Format, is related to MXF and stores essences separately. By using pointers to the right media, new versions of files can re-use media from other files. This further helps reduce storage costs.

     

     

    Rick finishes by running through workflow examples covering INgest, Remote Editing using PCoIP, Playout and VoD before running through the pros and cons of Public, Private and Hybrid cloud.

    Next on the rosta are Chris & Joe outlining their approach to playout in the cloud. They summarise the context and zoom in to look at linear channels and their Versio product. An important aspect of bringing products to the cloud, explains Joe, is to ensure you optimise the product to take advantage of the cloud. Where a software solution on-prem will use servers running the storage, databases, proxy generation and the like, in the cloud you don’t want to simply set up EC2 instances to run these same services. Rather, you should move your database into AWS’s database service, use AWS storage and use a cloud-provided proxy service. This is when the value is maximised.

    Alex leads with his learnings about calculating the benefits of cloud deployment focussing on the costs surrounding your server. You have to calculate the costs of the router port it’s connected to and the rest of the network infrastructure. Power and aircon is easy to calculate but don’t forget, Alex says, about the costs of renting the space in a data centre and the problems you hit when you have to lease another cage because you have become full. Suddenly and extra server has led to a two-year lease on datacentre space. He concludes by outlining Telestream’s approach to delivering transcode. QC, playback and stream monitoring in their Telestream Cloud offering.

    Evan Statton talks about the reasons that AWS created CDI and they merged the encoding stages for DTH transmission and OTT into one step. These steps came from customers’ wishes to simplify cloud worksflows or match their on-prem experiences. JPEG-XS, for isntance, is there to ensure that ultra low-latency video can flow in and out of AWS with CDI allowing almost zero delay, uncompressed video to flow within the cloud. Evan then looks through a number of workflows: Playout, stadium connectivity, station entitlement and ATSC 3.0.

    Liam’s presenation on machine learning in the cloud is the last of this section meeting. Liam focuses he comments and demos on machine learning for video processing. He explains how ML fits into the Articifical Intelligence banner and looks to where the research sector is heading. Machine learning is well suited to the cloud because of the need to have big GPU-heavy servers to manage large datasets and high levels of compute. the G4 series of EC2 servers is singled out as the machine learning instances of choice.

    Liam shows demos of super resolution and frame interpolation the later being used to generate slow motion clips, increasing the framerate of videos, improving the smoothness of stop-motion animations and more. Bringing this together, he finishes by showing some 4K 60fps videos created from ancient black and white film clips.

    The extensive Q&A looks at a wide range of topics:
    The need for operational change management since however close you get the cloud workflows to match what your staff are used to, there will be issues adjusting to the differences.
    How to budget due to the ‘transactional’ nature of AWS cloud microservices
    Problems migrating TV infrastructure to the cloud
    How big the variables are between different workflow designs
    When designing cloud workflows, what are the main causes of latency? When fighting latency what are the trade-offs?
    How long ML models for upconverting or transcoding take finish training?

    Watch now!
    Speakers

    Liam Morrison Liam Morrison
    Principal Architect, Machine Learning,
    Amazon Web Services (AWS)
    Alex Emmermann Alex Emmermann
    Cloud Business Development,
    Telestream
    Joe Ashba Joe Ashba
    Senior Solutions Architect,
    Imagine Communications
    Chris Ziemer Chris Ziemer
    VP Strategic Accounts & Partnerships,
    Imagine Communications
    Rick Phelps Rick Phelps
    Founder,
    Brklyn Media
    Evan Statton Evan Statton
    Principal Architect,
    Amazon Web Services (AWS)
    Ed DeLauter Moderator: Ed DeLauter

    Video: FOX – Uncompressed live sports in the cloud

    Is using uncompressed video in the cloud with just 6 frames of latency to get there and back ready for production? WebRTC manages sub-second streaming in one direction and can even deliver AV1 in real-time. The key to getting down to a 100ms round trip is to move down to millisecond encoding and to use uncompressed video in the cloud. This video shows how it can be done.

    Fox has a clear direction to move into the cloud and last year joined AWS to explains how they’ve put their delivery distribution into the cloud remuxing feeds for ATSC transmitters, satellite uplinks, cable headends and encoding for internet delivery, In this video, Fox’s Joel Williams, Evan Statton from AWS explain their work together making this a reality. Joel explains that latency is not a very hot topic for distribution as there are many distribution delays. The focus has been on getting the contribution feeds into playout and MCR monitoring quickly. After all, when people are counting down to an ad break, it needs to roll exactly on zero.

    Evan explains the approach AWS has taken to solving this latency problem and starts with considering using SMPTE’s ST 2110 in the cloud. ST 2110 has video flows of at least 1 Gbps, typically and when implemented on-premise is typically built on a dedicated network with very strict timing. Cloud datacentres aren’t like that and Evan demonstrates this showing how across 8 video streams, there are video drops of several seconds which is clearly not acceptable. Amazon, however, has a product called ‘Scalable Reliable Datagram’ which is aimed at moving high bitrate data through their cloud. Using a very small retransmission buffer, it’s able to use multiple paths across the network to deliver uncompressed video in real-time. The retransmission buffer here being very small enables just enough healing to redeliver missing packets within the 16.7ms it takes to deliver a frame of 60fps video.

    On top of SRD, AWS have introduced CDI, the Cloud Digital Interface, which is able to describe uncompressed video flows in a way already familiar to software developers. This ‘Audio Video Metadata’ layer handles flows in the same way as 2110, for instance keeping essences separate. Evan says this has helped vendors react favourably to this new technology. For them instead of using UDP, SRD can be used with CDI giving them not only normal video data structures but since SRD is implemented in the Nitro network card, packet processing is hidden from the application itself.

    The final piece to the puzzle is keeping the journey into and out of the cloud low-latency. This is done using JPEG XS which has an encoding time of a few milliseconds. Rather than using RIST, for instance, to protect this on the way into the cloud, Fox is testing using ST 2022-7. 2022-7 takes in two identical streams on two network interfaces, typically. This way it should end up with two copies of each packet. Where one gets lost, there is still another available. This gives path redundancy which a single stream will never be able to offer. Overall, the test with Fox’s Arizona-based Technology Center is shown in the video to have only 6 frames of latency for the return trip. Assuming they used a California-based AWS data centre, the ping time may have been as low as two frames. This leaves four frames for 2022-7 buffers, XS encoding and uncompressed processing in the cloud.

    Watch now!
    Speakers

    Joel Williams Joel Wiliams
    VP of Architecutre & Engineering,
    Fox Corporation
    Evan Statton Evan Statton
    Principal Architect, Media & Entertainment,
    AWS

    Where can SMPTE 2110 and NDI co-exist?

    Our final look back at the most viewed articles of 2020 is a very prescient topic, that of live IP production. As we all know, this has very much come into focus during the pandemic. Those that already had an IP infrastructure found managing it remotely easier than those that needed to get in and move SDI cables when they needed to provision new video links. Moreover putting together live remote workflows is all the easier with video IP and traditionally the decision on whether to use SMPTE 2110 has been a case of whether you need to be in the cloud or not.

    This article and video brought together Will Waters, an NDI expert from VizRT, Marc Risby from UK SI Boxer and Willem Vermost who was with the EBU. The conversation, pre-pandemic, focused on how to choose the video-over-IP technology which was best for you and really tried to find the ways in which broadcasters could benefit from both at the same time.

    The Broadcast Knowledge Editor, Russell Trafford-Jones also moderated a SMPTE Webcast with VizRT going into the detail of NDI and how it can be deployed in the cloud.

    Another important advance in 2020 was AWS’s release of CDI which is an implementation of SMPTE 2110 with enough proprietary adaptations to make it work within AWS. You can hear more about it in this video with David Griggs.

    Click here to watch ‘Where can SMPTE 2110 and NDI co-exist?’