Video: Progress Update for the ST 2110 WAN VSF Activity Group

2110 Over WAN Update

Is SMPTE ST 2110 suitable for inter-site connectivity over the WAN? ST 2110 is moving past the early adopter phase with more and more installations and OB vans bringing 2110 into daily use but today, each site works independently. What if we could maintain a 2110 environment between sites. There are a number of challenges still to be overcome and moving a large number of essence flows long distances and between PTP time domains is one of them.

Nevion’s Andy Rayner is chair of the VSF Activity Group looking into transporting SMPTE ST 2110 over WAN and is here to give an update on the work in progress which started 18 months ago. The presentation looks at how to move media between locations which has been the primary focus to date then introduces how controlling over which media are shared will be handled which is new to the discussions. Andy starts by outlining the protection offered in the scheme which supports both 2022-7 and FEC. Andy explains that though FEC is valuable for single links where 2022-7 isn’t viable, only some of the possible ST 2022-5 FEC configurations are supported, in part, to keep latency low.

The headline to carrying 2110 over the WAN is that it will be done over a trunk. GRE is a widely used Cisco trunking technology. Trunking, also known as tunnelling, is a technique of carrying ‘private’ traffic over a network such that a device sending into the trunk doesn’t see any of the infrastructures between the entrance and the exit. It allows, for instance, IPv6 traffic to be carried over IPv4 equipment where the v4 equipment has no idea about the v6 data since it’s been wrapped in a v4 envelope. Similarly, the ipv6 equipment has no idea that the ipv6 data is being wrapped and carried by routers which don’t understand ipv6 since the wrapping and unwrapping of the data is done transparently at the handoff.

In the context of SMPTE ST 2110, a trunk allows one port to be used to create a single connection to the destination, yet carry many individual media streams within. This has the big benefit of simplifying the inter-site connectivity at the IT level, but importantly also means that the single connection is quite high bandwidth. When FEC is applied to a connection, the latency introduced increases as the bit rate reduces. Since ST 2110 carries audio and metadata separately, an FEC-protected stream would have variable latency depending on the type of the of traffic. Bundling them in to one large data stream allows FEC to be applied once and all traffic then suffers the same latency increase. The third reason is to ensure all essences take the same network path. If each connection was separate, it would be possible for some to be routed on a physically different route and therefore be subject to a different latency.

Entering the last part of the talk, Andy switches gears to talk about how site A can control streams in site B. The answer is that it doesn’t ‘control’, rather there is the concept of requesting streams. Site A will declare what is available and site B can state what it would like to connect to and when. In response, site A can accept and promise to have those sources available to the WAN interface at the right time. When the time is right, they are released over the WAN. This protects the WAN connectivity from being filled with media which isn’t actually being used. These exchanges are mediated and carried out with NMOS IS-04 an IS-05.

Watch now!
Speakers

Andy Rayner Andy Rayner
Chief Technologist, Nevion,
Chair, WAN IP Activity Group, VSF
Wes Simpson Moderator: Wes Simpson
Founder, LearnIPVideo.com
Co-chair RIST Activity Group, VSF

Video: A Snapshot of NMOS: Just the Facts, Please.

NMOS is the open standard for multiple vendors co-operating on a broadcaster network, particularly ST 2110, to announce new devices and configure them. Acting as both a database but also a way of easily describing settings to be shared between systems. Often new ST 2110 systems are specified to be NMOS IS-04 and IS-05 capable.

NMOS IS-04 is the name of the specification which defines discovery and registration of devices while IS-05 describes the control of said devices. It’s very hard to run a SMPTE ST 2110 system without these or a proprietary protocol which exchanges the same information. It’s not practical to manage any of these tasks at anything more than the smallest scale.

John Mailhot from Imagine Communications delivers a concise summary of these technologies which may be new to you. He explains that an SDP will be generated and John reviews how you would read them. John explains that the stack is open source with the aim of promoting interoperability.

John takes the time needed to look at IS-04 and IS-05 in terms of practically implementing it at the end of this short talk.

Watch now!
Speaker

John Mailhot John Mailhot
Systems Architect, IP Convergence,
Imagine Communications

Video: NMOS: The API for IPMX

IPMX promises a ‘plug and play’ out-of-the-box experience, but with uncompressed SMPTE ST 2110 video and audio underneath. Given many tier 1 broadcasters have invested months or years implementing ST 2110. So how can IPMX deliver on its promise to the Pro-AV market?

Andrew Starks from Macnica presents this talk explaining how NMOS will fit into IPMX. Key to enabling a minimal config environment is the added mandatory specifications and standards within IPMX. For instance, while you can build an ST 2110 system without NMOS, that’s not an option for IPMX. The focus is on consistency and interoperability. Optional parts of IPMX cover HDCP carriage, USB, RS232 and IPV6. Many of the things often used within Pro-AV but may not be appropriate for low-cost, small use-cases.

Andrew gives an overview of IS-04 and IS-05 which allow for discovery and control of devices. He then looks at EDID and USB carriage and finishes by discussing why AMWA is choosing to use open specifications rather than creating standards.

Watch now!
Speakers

Andrew Starks Andrew Starks
Director of Product Management,
Macnica Technology,

Video: Introduction to IPMX

The Broadcast Knowledge has documented over 100 videos and webinars on SMPTE ST 2110. It’s a great suite of standards but it’s not always simple to implement. For smaller systems, many of the complications and nuances don’t occur so a lot of the deeper dives into ST 2110 and its associated specifications such as NMOS from AMWA focus on the work done in large systems in tier-1 broadcasters such as the BBC, tpc and FIS Skiing for SVT.

ProAV, the professional end of the AV market, is a different market. Very few companies have a large AV department if one at all. So the ProAV market needs technologies which are much more ‘plug and play’ particularly those in the events side of the market. To date, the ProAV market has been successful in adopting IP technology with quick deployments by using heavily proprietary solutions like ZeeVee, SDVoE and NDI to name a few. These achieve interoperability by having the same software or hardware in each and every implementation.

IPMX aims to change this by bringing together a mix of standards and open specifications: SMPTE ST 2110, NMOS specs and AES. Any individual or company can gain access and develop a service or product to meet them.

Andreas gives a brief history of IP to date outlining how AES67, ST 2110, ST 2059 and the IS specifications, his point being that the work is not yet done. ProAV has needs beyond, though complementary to, those of broadcast.

AES67 is already the answer to a previous interoperability challenge, explains Andreas, as the world of audio over IP was once a purely federated world of proprietary standards which had no, or limited, interoperability. AES67 defined a way to allow these standards to interoperate and has now become the main way audio is moved in SMPTE 2110 under ST 2110-30 (2110-31 allows for AES3). Andreas explains the basics of 2110, AES, as well as the NMOS specifications. He then shows how they fit together in a layered design.

Andreas brings the talk to a close looking at some of the extensions that are needed, he highlights the ability to be more flexible with the quality-bandwidth-latency trade-off. Some ProAV applications require pixel perfection, but some are dictated by lower bandwidth. The current ecosystem, if you include ST 2110-22’s ability to carry JPEG-XS instead of uncompressed video allows only very coarse control of this. HDMI, naturally, is of great importance for ProAV with so many HDMI interfaces in play but also the wide variety of resolutions and framerates that are found outside of broadcast. Work is ongoing to enable HDCP to be carried, suitably encrypted, in these systems. Finally, there is a plan to specify a way to reduce the highly strict PTP requirements.

Watch now!
Speaker

Andreas Hildebrand Andreas Hildebrand
Evangelist,
ALC NetworX