Video: Decoder Complexity Aware AV1 Encoding Optimization

AV1’s been famous for very low encoding speed, but as we’ve seen from panel like this, AV1 encoding times have dropped into a practical range and it’s starting to gain traction. Zoe Liu, CEO of Visionular, is here to talk at Mile High Video 2020 about how careful use of encoding parameters can deliver faster encodes, smooth decodes, and yet balance that balance with codec efficiency.

Zoe starts by outlining the good work that’s been done with the SVT-AV1 encoder which leaves it ready for deployment, as we heard previously from David Ronca of Facebook. Similarly the Dav1d decoder has recently made many speed improvements, now being able to easily decode 24fps on mobiles using between 1.5 and 3 Snapdragon cores depending on resolution. Power consumption has been measured as higher than AVC decoding but less than HEVC. Further to that, hardware support is arriving in many devices like TVs.

Zoe then continues to show ways in which encoding can be sped up by reducing the calculations done which, in turn, increased decoder speed. Zoe’s work has exposed settings that significantly speed up decoding but have very little effect on the compression efficiency of the codec which opens up use cases where decoding was the blocker and a 5% reduction in the ability to compress is a price worth paying. One example cited is ignoring partition sizes of less than 8×8. These small partitions can be numerous and bog down calculations but their overall contribution to bitrate reduction is very low.

All of these techniques are brought together under the heading of Decoder Complexity Aware AV1 Encoding Optimization which, Zoe explains, can result in an encoding speed-up of over two times the original framerate i.e. twice real-time on an Intel i5. Zoe concludes that this creates a great opportunity to apply AV1 to VOD use cases.

Watch now!
Speaker

Zoe Liu Zoe Liu
CEO,
Visionular

The New Video Codec Landscape – VVC, EVC, HEVC, LCEVC, AV1 and more

In the penultimate look back at the top articles of 2020, we recognise the continued focus on new codecs. Let’s not shy away from saying 2020 was generous giving us VVC, LCEVC and EVC from MPEG. AV1 was actually delivered in 2018 with an update (Errata 1) in 2019. However, the industry has avidly tracked the improved speeds of the encoder and decoder implementations.
Lastly, no codec discussion has much relevance without comparing to AV1, HEVC and VP9.

So with all these codecs spinning around it’s no surprise that one of the top views of 2020 was a video entitled “VVC, EVC, LCEVC, WTF? – An update on the next hot codecs from MPEG”. This video was from 2019 and since these have all been published now, this extensive roundup from SMPTE is a much better resource to understand these codecs in detail and in context with their predecessors.

Click here to read the article and watch the video.

The article explains many of the features of the new codecs: both how they work and also why there are three. Afterall, if VVC is so good, why release EVC? We learn that they optimise for different features such as computation, bitrate and patent licensing among other aspects.

Speakers

Sean McCarthy Sean McCarthy
Director, Video Strategy and Standards,
Dolby Laboratories
Walt Husak Walt Husak
Director, Image Technologies,
Dolby Laboratories

Video: The New Video Codec Landscape – VVC, EVC, HEVC, LC-EVC, AV1 and more

The codec arena is a lot more complex than before. Gone is the world of 5 years ago with AVC doing nearly everything. Whilst AVC is still a major force, we now have AV1 and VP9 being used globally with billions of uses a year, HEVC is not the force majeure it was once expected to be, but is now seeing significant use on iPhones and overall adoption continues to grow. And now, in 2020 we see three new codecs on the scene, VVC, EVC and LCEVC.

To help us make sense of this SMPTE has invited Walt Husak and Sean McCarthy to take us through what the current codecs are, what makes them different, how well they work, how to compare them and what the future roadmaps hold.

Sean starts by explaining which codecs are maintained by which bodies, with the IEC, ITU and MPEG being involved, not to mention the corporate codecs (VP8, and VP9 from Google) and the Chinese AVS series of codecs. Sean explains that these share major common elements and are each evolutions of each other. But why are all these codecs needed? Next, we see the use-cases that have brought these codecs into existence. Granted, AVC and HEVC entered the scene to reduce bit rate in an effort to make HD and UHD practical, respectively, but EVC and LC-EVC have different aims.

Sean gives a brief overview of the basics of encoding starting with partitioning the image, predicting parts of it, applying transformations, refining it (also known as applying ‘loop filters) and finishing with entropy codings. All of these blocks are briefly explained and exist in all the codecs covered in this talk. The evolutions which make the newer codecs better are therefore evolutions of each of these elements. For instance, explains Sean, splitting the image into different sections, known as partitioning, has become more sophisticated in recent codecs allowing for larger sections to be considered at once but, at the same time, smaller partitions created within each.

All codecs have profiles whereby the tools in use, or the complexity of their implementation, is standardised for certain types of video: 8-bit, 10-bit, HDR etc. This allows hardware implementers to understand the upper bounds of computation so they don’t end up over-provisioning hardware resources and increasing the cost. Sean looks at how VVC uses the same tools throughout all of its four profiles with only a few exceptions. Screen content sees two extra tools come for 4:2:2 formats and above. AV1 has the same tools throughout all the profiles but, deliberately, EVC doesn’t. Essential Video Coding has a royalty-free base layer which uses techniques that are not subject to any use payments. Using this layer gives you AVC-quality encoding, approximately. Using the main profile, however, gets you similar to HEVC encoding albeit with royalty payments.

The next part of the talk examines two main reasons for the increase in compression over recent codec generation, block size and partitioning, before highlighting some new tools in VVC and AV1. Block size refers to the size of the blocks that an image is split up into for processing. By using a larger block, the algorithms can spot patterns more efficiently so the continued increase from 16×16 in AVC to 128×128 now in VVC drives an increase in computation but also in compression. Once you have your block, splitting it up following the features of the images is the next stage. Called partitioning, we see the number of ways that the codecs can mathematically split a block has grown significantly. VVC can also partition chroma separately to luma. VVC and AV1 also include 64 and 16 ways, respectively, to diagonally partition rather than the typical vertical and horizontal partitioning modes.

Screen content coding tools are increasingly important, pandemics aside, there has long been growth in the amount of computer-generated content being shared online whether that’s through esports, video conference screen sharing or elsewhere. Truth be told, HEVC has support for screen-content encoding but it’s not in the main profile so many implementations don’t support it. VVC not only evolves the screen-content tools, but it also makes it present as default. AV1, also, was designed to work well with screen content. Sean takes some time to look at the IBC tool, intra-block copy, which allows the encoder to relate parts of the current frame to other sections. Working at the prediction stage, with screen content which contains, for instance, lots of text, parts of that text will look similar and to a first approximation, one part of the image can be duplicated in another. This is similar to motion compensation where a macroblock is ‘copied’ to another frame in a different position, but all the work is done on the present frame for Intra BC. Palette mode is another screen content tool which allows the colour of a section of the image to be described as a palette of colours rather than using the full RGB value for each and every pixel.

Sean covers the scaled prediction between resolutions in VVC and super-resolution in AV1, VVC’s 360-degree video optimisations and luma mapping before handing over to Walt Husak who goes into more detail on how the newer codecs work, starting with LCEVC.

LCEVC is a codec which improves the performance of already-deployed codecs, typically used to enhance the spatial resolution. If you wanted to encode HD, the codec would downsample the HD to an SD resolution and encode that with AVC, HEVC or another codec. At the same time, it would upsample that encoded video again and generate to correction layers which correct for artefacts and add sharpness. This information is added into to the base codec and sent to the decoder. This can allow a software-only enhancement to a hardware deployment fully utilising the hardware which has already been deployed. Walt notes that the enhancement layers are much the same technology as has already been standardised by SMPTE as VC6 (ST 2117). LCEVC has been found to be computationally efficient allowing it to address markets such as embedded devices where hardware restrictions would otherwise prohibit use of higher resolutions than for which it was originally designed. Very low bitrate performance is also very good.

Sean introduces us to his “Dos and Don’ts” of codec comparisons. The theme running through them is to take care that you are comparing like for like. Codecs can be set to run ‘fast’ or ‘slow’ each of which holds its own compromises in terms of encoding time and resulting quality. Similarly, there are some implementations which are made simply to implement the standard as rigorously as possible which is an invaluable tool when developing the codec or an implementation. Such a reference implementation for codec X, clearly, shouldn’t be compared to production implementations of a codec Y as the times are guaranteed to be very different and you will not learn anything from the process. Similarly, there are different tools which give codecs much more time to optimise known as single- and double-pass which shouldn’t be cross-compared.

The talk draws to a close with a look at codec performance. Sean shows a number of graphs showing how VVC performs against HEVC. Interestingly the metrics clearly show a 40% increase in efficiency of VVC over HEVC, but when seen in subjective tests, the ratings show a 50% improvement. VVC’s encoder is approximately 10x as complex as HEVC’s.

HEVC and AV1 perform similarly for the same bit rate. Overall, Sean says, AV1 is a little blurrier in regions of spatial detail and can have some temporal flickering. HEVC is more likely to have blocking and ringing artefacts. EVC’s main profile is up to 29% better than HEVC. LCEVC performs up to 8% better than AVC when using an AVC base layer and also slightly better than HEVC when using an HEVC base codec. Sean makes the point that the AVC has been continually updated since its initial release and is now on version 27, so it’s not strictly true to simply say it’s an ‘old’ codec. HEVC similarly is on version 7. Sean runs down part of the roadmap for AVC which leads on to the use of AI in codecs.

Finishing the video, Walt looks at the use of Deep Learning in codecs. Deep learning is also known as machine learning and referred to as AI (Artificial Intelligence). For most people, these terms are interchangeable and refer to the ability of a signal to be manipulated not by a fixed equation or algorithm (such as Lanczos scaling) but by a computer that has been trained through many millions of examples to recognise what looks ‘right’ and to replicate that effect in new scenarios.

Walt talks about JPEG’s AI learning research on still images who are aiming to complete an ‘end-to-end’ study of compression with AI tools. There’s also MPEG’s Deep Neural Network-based Video Coding which is looking at which tools within codecs can be replaced with AI. Also, recently we have seen the foundation of the MPAI (Moving Picture, Audio and Data Coding by Artificial Intelligence) organisation by Leonardo Chiariglione, an industry body devoted to the use of AI in compression. With all this activity, it’s clear that future advances in compression will be driven by the increasing use of these techniques.

The video ends with a Q&A session.

Watch now!
Find out more on SMPTE’s site
Speakers

Sean McCarthy Sean McCarthy
Director, Video Strategy and Standards,
Dolby Laboratories
Walt Husak Walt Husak
Director, Image Technologies,
Dolby Laboratories

Video: AV1 Real-Time Screen Content Coding

We saw in this week’s AV1 panel, AV1 encoding times have dropped into a practical range and it’s starting to gain traction. One of the key differentiators of the codec, along only with VVC is the inclusion by default of tools aimed at encoding screens and computer graphics rather than natural video.

Zoe Liu, CEO of Visionular talks at RTE2020 about these special abilities of AV1 to encode screen-content. The video starts with a refresher on AV1 in general, it’s arrival on the scene from the Alliance of Open Media and the en/decoder ecosystem around it such as SVT-AV1 we talked about two days ago, dav1d, rav1e etc. as well as a look at the hardware encoders being readied from the likes of Samsung.

Turning her focus to screen content, Zoe explains that screen content is different for a number of reasons. For content like this presentation, much of the video stays static a lot of the time, then there is a peak as the slide changes. This gives rise to the idea of allowing for variable frame rates but also optimising for the depth of the colour palette. Motion on screens can be smoother and also has more distinct patterns in the form of identical letters. This seems to paint a very specific picture of what screen content is, when we all know that it’s very variable and usually has mixed uses. However, having tools to capture these situations as they arise is critical for the times when it matters and it’s these coding tools that Zoe highlights now.

One common technique is to partition the screen into variable-sized blocks and AV1 brings more partition shapes than in HEVC. Motion compensation has been the mainstay of MPEG encoding for a long time. AV1 also uses motion compensation and for the first time brings in motion vectors which allow for rotation and zooming. Zoe explains the different modes available including compound motion modes of which there are 128.

Capitalising on the repetitive nature screen content can have, Intra Block Copy (IntraBC) is a technique used to copy part of a frame to other parts of the frame. Similar to motion vectors which point to other frames, this helps replication within the frame. This is used as part of the prediction and therefore can be modified before the decode is finished allowing for small variations. Palette Mode CFL (Chrome from Luma) is a predictor for colour based on the luma signal and some signalling from the encoder.

Zoe highlights to areas where screen content reacts badly to encoding tools normally beneficial such as temporal filtering which is usually associated with 8% gains in efficiency at the encoder, but this can make motion vectors much more complicated in screen content and hurt compression efficiency. Similarly, when partitioning, screen content lower sizes often work well for natural video, but the opposite is true for screen content.

The talk finishes with Zoe explaining how Visionular’s own AV1 implementation preformed on standardised 4K against other implementations, their implementation of scalable video coding for RTC and the overall compression improvements.

Zoe Liu also contributed to this more detailed overview

Watch now!
Speaker

Zoe Liu Zoe Liu
CEO,
Visionular