Video: ATSC 3.0 in 2021

ATSC3.0 is an innovative set of standards that gets closer to the maximum possible throughput, AKA the Shannon limit, than 5G and previous technologies. So flexible a technology it is that it allows convergence with 5G networks, itself in the form of an SFN and inter-transmitter links as well as a seamless handoff for receivers between the internet and the broadcast transmission. ATSC 3.0 is an IP-based technology that is ready to keep up to date with changing practices and standards yet leave viewers to experience the best of broadcast RF transmission, wireless internet and broadband without having to change what they’re doing or even know which one(s) they’re watching.

This SMPTE event looks at a number of ATSC’s innovations, moderated by SMPTE Toronto section chair, Tony Meerakker and kicks off with Orest Sushko from the Humber Broadcast-Broadband Convergence Lab development in Toronto. This is a Canadian initiative to create an environment where real-world ATSC 3.0 testing can be carried out. It’s this type of lab that can help analyse the applications talked about in this video where different applications are brought into a broadcast RF environment including integration with 5G networks. It will also drive the research into ATSC 3.0 adoption in Canada.

Next is the ATSC president, Madeleine Noland, who introduces what ATSC 3.0 is and why she feels its such an innovative standards suite. Created by over 400 engineers throughout the world, Madeleine says that ATSC 3.0 is a state of the art standard with the aims to add value to the broadcast service with the idea that broadcast towers are ‘not just TV anymore. This idea of blurring the lines between traditional RF transmission and other services continues throughout this series of talks.

The aim of ATSC 3.0 is to deliver all television over IP, albeit it uni-directional IP. It also uses a whole stack of existing technologies at the application layer such as HTML5, CSS and JavaScript. These are just three examples of the standards on which ATSC 3.0 is based. Being based on other standards increases the ability to deploy quickly. ATSC 3.0 is a suite of tens of standards that describe the physical layer, transport, video & audio use, apps and more. Having many standards within is another way ATSC 3.0 can keep up with changes; by modifying the relevant standards and updating them but also not being afraid of adding more.

Madeleine says that 62 market areas will be launching which bring the reach of ATSC 3.0 up to 75% of the households in the US under the banner ‘NextGen TV’ which will act as a logo signpost for customers on TVs and associated devices. ATSC 3.0 exists outside the US in Korea where 75% of the population can receive ATSC 3.0. Canada is exploring, Brazil is planning, India’s TSDSI is researching and many other countries like Australia are also engaging with the ATSC to consider their options for national deployment against, presumably DVB-I.

The last point in this section is that when you convert all your transmitters to IP it seems weird to have just a load of ‘node’. Madeleine’s point is that a very effective mesh network could be created if only we could connect all these transmitters together. These could then provide some significant national services which will be discussed later in this video.

Interactive TV

Mark Korl is next talking about his extensive work creating an interactive environment within ATSC 3.0. The aim here was to enhance the viewer/user experience, have better relationships with them and provide an individualised offering including personalised ads and content.

Mark gives an overview of A/244, ATSC 3.0 Interactive Content and ATSC 3.0 standard A/338 talking about signalling, delivery, synchronisation and error protection, service announcement such as EPG, content recovery in redistribution scenarios, watermarking, Application event delivery, security and more.

Key features of interactivity are the aforementioned use of HTML 5, CSS and JavaScript to create seamless and secure delivery of interactive content from broadcast and broadband. Each application lives in its own separate context and features are managed via API.

Mark finishes by outlining the use of the Emergency Advanced Emergence informAtion table which signals everything the receiver needs to know about the AEA message and associated rich media and then looks at how, at the client, content/ads can be replaced by manipulating the .mpd manifest file with locally-downloaded content using XLink references.

Innovateive technologies implemented in ATSC 3.0

Dr. Yiyan Wu takes the podium next explaining the newest RF-based techniques used in ATSC 3.0 which are managing to get ATSC3.0 closer to the Shannon limit than other similar contemporary technologies such as 4F and 5G New Radio (NR). These technologies are such as LDPC – Low Dennsity Parity Codes – which have been in DVB-S2 and DVB-T2 for a long time but also Non-Uniform Constellations such as 4096NUC-QAMas well as Canada-invented Layered-Devision-Multiplexing (LDM) that can efficiently combine robust mobile and high-datarate service on top of each other on a single TV channel. This works by having a high-power, robust-coded signal with a quieter signal underneath which, in good situations, can still be decoded. The idea is that the robust signal is the HD transmitted with HEVC SVC (Scalable Video Coding) meaning that the UHD layer can be an enhancement layer on top of the HD. There is no need to send the whole UHD signal. Dr. Yuyan Wu finishes this section by explaining the LDM offers reduced Tx and Rx power.

Using LDM, however, we’re actually creating more bandwidth than we had before. Dr. Wu points out that this can be used for improved services or be used for an in-band distribution link, i.e. to move live video down through a network of transmitters. While not necessary the fact that an ATSC 3.0 transmitter can operate as part of a single frequency network is very useful as a weak signal from one transmitter can be boosted by the signal from another.

Dr. Wu spends time next talking about 5G use cases detailing the history of failed attempts at ‘broadcast’ versions of 3G, 4G and LTE. With 5G USPs such as network slicing, the current version of the broadcast mode of 5G is more likely than ever to be commercially implemented. Called 5G feMBMS, it’s actually a 4G/LTE-based technology for delivery over a 5G network.

One plan for 5G integration, which is possible as ATSC 3.0 has the same timing reference as 5G networks, is for 5G networks to spot when thousands of people are watching the same things and move that traffic distribution over to the ATSC 3.0 towers who can do multicast would an issue.

Next Gen commercialisation update

Last in the video we have Anne Schelle who works with the ATSC as a board chair of the ATSC 3.0 Security Alliance. She explains that the number of markets announcing for deployment in 2021 is twice that of 2020. Deployment of ATSC 3.0 is going well, the most common initial use has been to test interactive services. The projected TV shipping numbers with ATSC 3.0 internally are positive and, Anne says, the economics for NextGen receiver inclusion is better than it has been previously. Speaking from her security perspective, having in-built content security protection is new for broadcasters who welcome it as it helps reduce piracy

Watch now!
Speakers

Madeleine Noland Madeleine Noland
President,
ATSC
Mark Corl Mark Corl
Chair ATSC S38 Specialist Group on Interactive Environment
SVP Emergent Technology Development, Triveni Digital
Yiyan Wu M.C. Dr. Yiyan Wu
Principal Research Scientist,
Communications Research Centre Canada (CRC)
Anne Schelle Anne Schelle
Board chair of ATSC 3.0 Security Alliance
Board Member, ATSC
Managing Director, Pearl TV
Orest Sushko Orest Sushko
Project Lead, Humber Broadcast-Broadband Conergence Lab
Program Coordinator, Film & Multiplatform Storytelling Program, Humber College
Tony Meerakker Moderator: Tony Meerakker
Chair, SMPTE Toronto Section
Consultant, Meer Tech Systems

Video: ATSC 3.0 Part IV – Advanced Emergency Alerting, AWARN & Interactive Content

In a country where the weather can be life threatenin and where earthquakes and wild fires pose a real threat to life, an Early Alert System (EAS) is very important. This talk looks at the ‘Advanced Emergency Alerting’ system (AEA) that is available in ATSC 3.0 and the coalition behind it. It also talks about some of the interactive features possible.

Richard Chernock is back to dig deeper in to the set of standards which is known as ATSC 3.0. He starts by looking at the broadcaster’s role in being a public information provider both to first responders and to the public at large. ATSC 3.0 was seen as an opportunity to go much further than EAS available in ATSC 1.0. One improvement, as covered previously, allows for very robust transmission methods. AEA also provides rich media, version information and expiry information. Additionally it can be delivered to targeted areas.

The AWARN (Advance Warning and Response Network) is a project to look world-wide at the different EAS activities ongoing in order to bring learning into ATSC and represents both broadcasters and national agencies such as FEMA and homeland security. It provides practical advice on resilience (backup generator provision), how to maximise the verboseness of information, encryption and much more.

Finishing off this short talk, Richard highlights the OTT-style interactive services possible with ATSC 3.0. He shows a quiz format where the graphics are within the control of the broadcaster. Other examples discussed are interactive access to sports replays, purchasing merchandise, the ability to synchronise with a second screen and advert displays.
Watch now!
Please note this is a 30 minute video but the version on YouTube repeats hence lasting 1.5 hours
Speakers

Richard Chernock Richard Chernock
Former CSO,
Triveni Digital

Video: Building Television Systems in a Time of Multiple Technology Transitions

Major technology transitions can be hard to keep up with, and when you have a project requiring you decide which one to go with, it can seem unmanageable. This panel put together by SMPTE New York looks gives the view from System Integrators on how to make this work and cover their experience with a wide range of new technologies.

SMPTE ST 2110 is an entire paradigm shift

John Humphrey
John Turner kicked off explaining the reasoning for using SDI over SMPTE ST 2110 in some circumstances. For that project, his client had a fixed space so wouldn’t see the benefits of 2110 in terms of expansion. Their workflow already worked well in SDI and at the time, the costs of 2110 would have been higher. Overall, the project went with SDI, was successful and they are a happy customer. Karl Paulsen agreed that new technology shouldn’t be ‘for the sake of it’ and added that whilst individual products with a new technology may be stable, that’s not certain to be the case when interoperating within a whole system. As such, this puts the implementation time up meaning the incumbent technologies do tend to get chosen when time is at a premium.

Turning to 5G, Karl answered the question “what are the transformational technologies”. For some applications, for instance, back of the camera RF in a stadium, 5G is a major leap compared to microwave packs, but early on in a technology’s life, like we are with 5G, it’s a matter of working out where it does and where it doesn’t work well. In time, it will probably adapt to some of those other use cases that it wasn’t suited for initially. John Turner highlighted the elements that ATSC 3.0 transforms in a big way. From an RF perspective, its modulation is much stronger and more flexible, that it’s able to drive new business models.

John Mailhot’s view on the transformational challenge is ‘the people’. He puts forward the idea that the technical constraints of router size and max cable length, to name two examples, embedded themselves into the routines, assumptions and architectures that people embody in their work. With SMPTE ST-2110, most of these constraints are removed. This means you are a lot freer to work out the workflows the business wants. The challenge here is to have the imagination and fortitude to forge the right workflow without getting paralysed by choice.

“SMPTE ST 2110 is an entire paradigm shift”, John Humphrey

After responding to the moderator’s question on how much turmoil these transitions are causing, Mark Schubin summarises the situation by saying we need to work out which of the technologies is like a fridge (replacing previous technologies), a microwave (used as well as a conventional oven) and an induction cooker (requires change in cookware, little adoption). John Humphrey adds that ST 2110 is a technology which viewers don’t notice since the visual quality is the same. HDR, is the opposite so they need different approaches.

During the last 45 minutes, the panel took questions from the audience covering how to hire talent, the perspective of younger people on technology, programming specifically made for smartphones, ATSC 3.0 implementation, reliability of home internet, PTP and more.

Watch now!
Speakers

Mark Schubin Mark Schubin
Consultant & Explainer
John Humphrey John Humphrey
VP, Business Development,
Hitachi Kokusai Electric America Ltd.
Karl Paulsen Karl Paulsen
CTO,
Diversified
John Turner John Turner
Principal Engineer
Turner Engineering Inc.
John Mailhot John Mailhot
Systems Architect for IP Convergence
Imagine Communications

Video: ATSC 3.0 Seminar Part III

ATSC 3.0 is the US-developed set of transmission standards which is fully embracing IP technology both over the air and for internet-delivered content. This talk follows on from the previous two talks which looked at the physical and transmission layers. Here we’re seeing how IP throughout has benefits in terms of broadening choice and seamlessly moving from on-demand to live channels.

Richard Chernock is back as our Explainer in Chief for this session. He starts by explaining the driver for the all-IP adoption which focusses on the internet being the source of much media and data. The traditional ATSC 1.0 MPEG Transport Stream island worked well for digital broadcasting but has proven tricky to integrate, though not without some success if you consider HbbTV. Realistically, though, ATSC see that as a stepping stone to the inevitable use of IP everywhere and if we look at DVB-I from DVB Project, we see that the other side of the Atlantic also sees the advantages.

But seamlessly mixing together a broadcaster’s on-demand services with their linear channels is only benefit. Richard highlights multilingual markets where the two main languages can be transmitted (for the US, usually English and Spanish) but other languages can be made available via the internet. This is a win in both directions. With the lower popularity, the internet delivery costs are not overburdening and for the same reason they wouldn’t warrant being included on the main Tx.

Richard introduces ISO BMFF and MPEG DASH which are the foundational technologies for delivering video and audio over ATSC 3.0 and, to Richard’s point, any internet streaming services.

We get an overview of the protocol stack to see where they fit together. Richard explains both MPEG DASH and the ROUTE protocol which allows delivery of data using IP on uni-directional links based on FLUTE.

The use of MPEG DASH allows advertising to become more targeted for the broadcaster. Cable companies, Richard points out, have long been able to swap out an advert in a local area for another and increase their revenue. In recent years companies like Sky in the UK (now part of Comcast) have developed technologies like Adsmart which, even with MPEG TS satellite transmissions can receive internet-delivered targeted ads and play them over the top of the transmitted ads – even when the programme is replayed off disk. Any adopter of ATSC 3.0 can achieve the same which could be part of a business case to make the move.

Another part of the business case is that ATSC not only supports 4K, unlike ATSC 1.0, but also ‘better pixels’. ‘Better pixels’ has long been the way to remind people that TV isn’t just about resolution. ‘Better pixels’ includes ‘next generation audio’ (NGA), HDR, Wide Colour Gamut (WCG) and even higher frame rates. The choice of HEVC Main 10 Profile should allow all of these technologies to be used. Richard makes the point that if you balance the additional bitrate requirement against the likely impact to the viewers, UHD doesn’t make sense compared to, say, enabling HDR.

Richard moves his focus to audio next unpacking the term NGA talking about surround sound and object oriented sound. He notes that renderers are very advanced now and can analyse a room to deliver a surround sound experience without having to place speakers in the exact spot you would normally need. Options are important for sound, not just one 5.1 surround sound track is very important in terms of personalisation which isn’t just choosing language but also covers commentary, audio description etc. Richard says that audio could be delivered in a separate pipe (PLP – discussed previously) such that even after the
video has cut out due to bad reception, the audio continues.

The talk finishes looking at accessibility such as picture-in-picture signing, SMPTE Timed Text captions (IMSC1), security and the ATSC 3.0 standards stack.

Watch now!
Speaker

Richard Chernock Richard Chernock
Former CSO,
Triveni Digital