Video: IP For Broadcast, Colour Theory, AI, VR, Remote Broadcast & More


Today’s video has a wide array of salient topics from seven speakers at SMPTE Toronto’s meeting in February. Covering Uncompressed IP networking, colour theory & practice, real-time virtual studios and AI, those of us outside of Toronto can be thankful it was recorded.

Ryan Morris from Arista (starting 22m 20s) is the first guest speaker and kicks off with though-provoker: showing the uncompressed bandwidths of video, we see that even 8K video at 43Gb/s is much lower than the high-end network bandwidths available in 400Gbps switch ports available today with 800Gbps arriving within a couple of years. That being said, he gives us an introduction to two of the fundamental technologies enabling the uncompressed IP video production: Multicast and Software-Defined Networking (SDN).

Multicast, Ryan explains is the system of efficiently distributing data from one source to many receivers. It allows a sender to only send out one stream even if there are a thousand receivers on the network; the network will split the feed at the nearest common point to the decoder. This is all worked out using the Internet Group Message Protocol (IGMP) which is commonly found in two versions, 2 and 3. IGMP enables routers to find out which devices are interested in which senders and allows devices to register their interest. This is all expressed by the notion of joining or leaving a multicast group. Each multicast group is assigned an IP address reserved by international agreement for this purpose, for instance, 239.100.200.1 is one such address.

Ryan then explores some of the pros and cons of IGMP. Like most network protocols each element of the network makes its own decision based on standardised rules. Though this works well for autonomy, it means that there no knowledge of the whole system. It can’t take notice of link capacity, it doesn’t know the source bandwidth, you can guess where media will flow, but it’s not deterministic. Broadcasters need more assurance of traffic flows for proper capacity planning, planned maintenance and post-incident root cause analysis.

Reasons to consider SDN over IGMP

SDN is an answer to this problem. Replacing much of IGMP, SDN takes this micro-decision making away from the switch architecture and replaces it with decisions made looking at the whole picture. It also brings an in important abstraction layer back to broadcast networks; engineers are used to seeing X-Y panels and, in an emergency, it’s this simplicity which gets things back on air quickly and effectively. With SDN doing the thinking, it’s a lot more practical to program a panel with human names like ‘Camera 1’ and allow a take button to connect it to a destination.

Next is Peter Armstrong from THP who talks about colour in television (starting 40m 40s). Starting back with NTSC, Peter shows the different colour spaces available from analogue through to SD then HD with Rec 709 and now to 3 newer spaces. For archiving, there is an XYZ colour space for archival which can represent any colour humans can see. For digital cinema there is DCI-P3 and with UHD comes BT 2020. These latter colour spaces provide for display of many more colours adding to the idea of ‘better pixels’ – improving images through improving the pixels rather than just adding more.

Another ‘better pixels’ idea is HDR. Whilst BT 2020 is about Wide Colour Gamut (WCG), HDR increases the dynamic range so that the brightness of each pixel can represent a brightness between 0 and 1000 NITs, say instead of the current standard of 0 to 100. Peter outlines the HLG and PQ standards for delivering HDR. If you’re interested in a deeper dive, check out our library of articles and videos such as this talk from Amazon Prime Video. or this from SARNOFF’s Norm Hurst.

ScreenAlign device from DSC Labs

SMPTE fellow and founder of DSC Laboratories, David Corley (56m 50s), continues the colour theme taking us on an enjoyable history of colour charting over the past 60 years up to the modern day. David explains how he created a colour chart in the beginning when labs were struggling to get colours correct for their non-black and white film stock. We see how that has developed over the years being standardised in SMPTE. Recently, he explains, they have a new test card for digital workflows where the camera shoots a special test card which you also have in a digital format. In your editing suite, if you overlay that file on the video, you can colour correct the video to match. Furthermore, DSC have developed a physical overlay for your monitor which self-illuminates meaning when you put it in front of your monitor, you can adjust the colour of the display to match what you see on the chart in front.

Gloria Lee (78m 8s) works for Graymeta, a company whose products are based on AI and machine learning. She sets the scene explaining how broadly our lives are already supported by AI but in broadcast highlights the benefits as automating repetitive tasks, increasing monetisation possibilities, allowing real-time facial recognition and creating additional marketing opportunities. Gloria concludes giving examples of each.

Cliff Lavalée talks about ‘content creation with gaming tools’ (91m 10s) explaining the virtual studio they have created at Groupe Média TFO. He explains the cameras the tracking and telemetry (zoom etc.) needed to ensure that 3 cameras can be moved around in real-time allowing the graphics to follow with the correct perspective shifts. Cliff talks about the pros and cons of the space. With hardware limiting the software capabilities and the need for everything to stick to 60fps, he finds that the benefits which include cost, design freedom and real-time rendering create an over-all positive. This section finishes with a talk from one of the 3D interactive set designers who talks us through the work he’s done in the studio.

Mary Ellen Carlyle concludes the evening talking about remote production and esports. She sets the scene pointing to a ‘shifting landscape’ with people moving away from linear TV to online streaming. Mary discusses the streaming market as a whole talking about Disney+ and other competitors currently jostling for position. Re-prising Gloria’s position on AI, Mary next looks further into the future for AI floating the idea of AI directing of football matches, creating highlights packages, generating stats about the game, spotting ad insertion opportunities and more.

Famously, Netlflix has said that Fortnite is one of its main competitors. And indeed, esports is a major industry unto itself so whether watching or playing games, there is plenty of opportunity to displace Netflix. Deloitte Insights claim 40% of gamers watch esports events at least once a week and in terms of media rights, these are already in the 10s and 100s of millions and are likely to continue to grow. Mary concludes by looking at the sports rights changing hands over the next few years. The thrust being that there are several high profile rights auctions coming up and there is likely to be fervent competition which will increase prices. Some are likely to be taken, at least in part, by tech giants. We have already seen Amazon acquiring rights to some major sports rights.

Watch now!
Speakers

Ryan Morris Ryan Morris
Systems Engineer,
Arista
Gloria Lee Gloria Lee
VP, Business Development
Graymeta Inc.
Mary Ellen Carlyle Mary Ellen Carlyle
SVP & General Manager,
Dome Productions
Cliff Lavalée Cliff Lavalée
Director of LUV studio services,
Groupe Média TFO
Peter Armstrong Peter Armstrong
Video Production & Post Production Manager,
THP
David Corley David Corley
Presiedent,
DSC Labs

Video: How to build two large Full-IP OB trucks (during COVID-19)

It’s never been easy building a large OB van. Keeping within axel weight, getting enough technology in and working within a tight project timeline, not to mention keeping the expanding sections cool and water-tight is no easy task. Add on that social distancing thanks to SARS-CoV-2 and life gets particularly tricky.

This project was intriguing before Covid-19 because it called for two identical SMPTE ST-2110 IP trucks to be built, explains Geert Thoelen from NEP Belgium. Both are 16-camera trucks with 3 EVS each. The idea being that people could walk into truck A on Saturday and do a show then walk into truck B on Sunday and work in exactly the same show but on a different match. Being identical, when these trucks will be delivered to Belgium public broadcaster RTBF, production crews won’t need to worry about getting a better or worse truck then the other programmes.. The added benefit is that weight is reduced compared to SDI baseband. The trucks come loaded with Sony Cameras, Arista Switches, Lawo audio, EVS replays and Riedel intercoms. It’s ready to take a software upgrade for UHD and offers 32 frame-synched and colour-corrected inputs plus 32 outputs.

Broadcast Solutions have worked with NEP Belgium for many years, an ironically close relationship which became a key asset in this project which had to be completed under social distancing rules. Working open book and having an existing trust between the parties, we hear, was important in completing this project on time. Broadcast Solutions separated internet access for the truck to access the truck as it was being built with 24/7 remote access for vendors.

Axel Kühlem fro broadcast solutions address a question from the audience of the benefits of 2110. He confirms that weight is reduced compared to SDI by about half, comparing like for like equipment. Furthermore, he says the power is reduced. The aim of having two identical trucks is to allow them to be occasionally joined for large events or even connected into RTBF’s studio infrastructure for those times when you just don’t have enough facilities. Geert points out that IP on its own is still more expensive than baseband, but you are paying for the ability to scale in the future. Once you count the flexibility it affords both the productions and the broadcaster, it may well turn out cheaper over its lifetime.

Watch now!
Speakers

Axel Kühlem Axel Kühlem
Senior System Architect
Broadcast Solutions
Geert Thoelen Geert Thoelen
Technical Director,
NEP Belgium

Video: 5G Technology

5G seems to offer so much, but there is a lot of nuance under the headlines. Which of the features will telcos actually provide? When will the spectrum become available? How will we cope with the new levels of complexity? Whilst for many 5G will simply ‘work’, when broadcasters look to use it for delivering programming, they need to look a few levels deeper.

In this wide-ranging video from the SMPTE Toronto Section, four speakers take us through the technologies at play and they ways they can be implemented to cut through the hype and help us understand what could actually be achieved, in time, using 5G technology.

Michael J Martin is first up who covers topics such as spectrum use, modulation, types of cells, beam forming and security. Regarding spectrum, Michael explains that 5G uses three frequency bands, the sub 1GHz spectrum that’s been in use for many years, a 3Ghz range and a millimetre range at 26Ghz.

“It’s going to be at least a decade until we get 5G as wonderful as 4G is today.”

Michael J Martin
Note that some countries already use other frequencies such as 1.8GHz which will also be available.The important issue is that the 26Ghz spectrum will typically not be available for over a year, so 5G roll-out starts in some of the existing bands or in the 3.4Ghz spectrum. A recurring theme in digital RF is the use of OFDM which has long been used by DVB and has been adopted by ATSC 3.0 as their modulation, too. OFDM allows different levels of robustness so you can optimise reach and bandwidth.

Michael highlights a problem faced in upgrading infrastructure to 5G, the amount of towers/sites and engineer availability. It’s simply going to take a long time to upgrade them all even in a small, dense environment. This will deal with the upgrade of existing large sites, but 5G provides also for smaller cells, (micro, pico and femto cells). These small cells are very important in delivering the millimetre wavelength part of the spectrum.

Network Slicing
Source: Michael J. Martin, MICAN Communications

We look at MIMO and beam forming next. MIMO is an important technology as it, effectively, collects reflected versions of the transmitted signals and processes them to create stronger reception. 5G uses MIMO in combination with beam forming where the transmitter itself electronically manipulates the transmitter array to focus the transmission and localise it to a specific receiver/number of receivers.

Lastly, Michael talks about Network Slicing which is possibly one of the most anticipated features of 5G by the broadcast community. The idea being that the broadcaster can reserve its own slice of spectrum so when sharing an environment with 30,000 other receivers, they will still have the bandwidth they need.

Our next speaker is Craig Snow from Huawei outlines how secondary networks can be created for companies for private use which, interestingly, partly uses separate frequencies from public network. Network slicing can be used to separate your enterprise 5G network into separate networks fro production, IT support etc. Craig then looks at the whole broadcast chain and shows where 5G can be used and we quickly see that there are many uses in live production as well as in distribution. This can also mean that remote production becomes more practical for some use cases.

Craig moves on to look at physical transmitter options showing a range of sub 1Kg transmitters, many of which have in-built Wi-Fi, and then shows how external microwave backhaul might look for a number of your buildings in a local area connecting back to a central tower.

Next is Sayan Sivanathan who works for Bell Mobility and goes in to more detail regarding the wider range of use cases for 5G. Starting by comparing it to 4G, highlighting the increased data rates, improved spectrum efficiency and connection density of devices, he paints a rosy picture of the future. All of these factors support use cases such as remote control and telemetry from automated vehicles (whether in industrial or public settings.)  Sayan then looks at the deployment status in the US, Europe and Korea. He shows the timeline for spectrum auction in Canada, talks through photos of  5G transmitters in the real world.

Global Mobile Data Traffic (Exabytes per month)
Source: Ericsson Mobility Report, Nov 2019

Finishing off today’s session is Tony Jones from MediaKind who focuses in on which 5G features are going to be useful for Media and Entertainment. One is ‘better video on mobile’. Tony picks up on a topic mentioned by Michael at the beginning of the video: processing at the edge. Edge processing, meaning having compute power at the closest point of the network to your end user allows you to deliver customised manifest and deal with rights management with minimal latency.

Tony explains how MediaKind worked with Intel and Ericsson to deliver 5G remote production for the 2018 US Open. 5G is often seen as a great way to make covering golf cheaper, more aesthetically pleasing and also quicker to rig.

The session ends with a Q&A

Watch now!
Speakers

Michael J Martin Michael J Martin
MICAN Communications
Blog: vividcomm.com
Tony Jones Tony Jones
Principal Technologist
MediaKind Global
Craig Snow Craig Snow
Enterprise Accounts Director,
Huawei
Sayan Sivanathan Sayan Sivanathan
Senior Manager – IoT, Smart Cities & 5G Business Development
Bell Mobility

Video: RIST: Enabling Remote Work with Reliable Live Video Over Unmanaged Networks

Last week’s article on RIST, here on The Broadcast Knowledge, stirred up some interest about whether we view RIST as being against SRT & Zixi, or whether it’s an evolution thereof. Whilst the talk covered the use of RIST and the reasons one company chose to use it, this talk explains what RIST achieves in terms of features showing that it has a ‘simple’ and ‘main’ profile which bring different features to the table.

Rick Ackermans is the chair of the RIST Activity Group which is the group that develops the specifications. Rick explains some of the reasons motivating people to look at the internet and other unmanaged networks to move their video. The traditional circuit-based contribution and distribution infrastructure on which broadcasting relied has high fixed costs. Whilst this can be fully justifiable for transmitter links, though still expensive, for other ad-hoc circuits you are paying all the time for something which is only occasionally used, satellite space in the C-band is reducing squeezing people out. And, of course, remote working is much in the spotlight so technologies like RIST which don’t have a high latency (unlike HLS) are in demand.

RIST manages to solve many of the problems with using the internet such as protecting your content from theft and from packet loss. It’s a joint effort between many companies including Zixi and Haivision. The aim is to create choice in the market by removing vendor bias and control. Vendors are more likely to implement an open specification than one which has ties to another vendor so this should open up the market creating more demand for this type of solution.

In the next section, we see how RIST as a group is organised and who it fits in to the Video Services Forum, VSF. We then look at the profiles available in RIST. A full implementation aims at being a 3-layer onion with the ‘Simple Profile’ in the middle. This has basic network resilience and interoperability. On top of that, the ‘Main Profile’ is built which adds encryption, authentication and other features. The future sees an ‘Enhanced Profile’ which may bring with it channel management.

Rick then dives down into each of these profiles to uncover the details of what’s there and explain the publication status. The simple profile allows full RTP interoperability for use as a standard sender, but also adds packet recovery plus seamless switching. The Main profile introduces the use of GRE tunnels where a single connection is setup between two devices. Like a cable, multiple signals can then be sent down the cable together. From an IT perspective this makes life so much easier as the number of streams is totally transparent to the network so firewall configuration, for example, is made all the simpler. However it also means that by just running encryption on the tunnel, everything is encrypted with no further complexity. Encryption works better on higher bitrate streams so, again, running on the aggregate has a benefit than on each stream individually. Rick talks about the encryption modes with DTLS and Pre-shared Key being available as well as the all important, but often neglected, step of authenticating – ensuring you are sending to the endpoint you expected to be sending to.

The last part of the talk covers interoperability, including a comparison between RIST and SRT. Whilst there are many similarities, Rick claims RIST can cope with higher percentages of packet loss. He also says that 2022-7 doesn’t work with SRT, though The Broadcast Knowledge is aware of interoperable implementations which do allow 2022-7 to work even through SRT. The climax of this section is explaining the setup of the RIST NAB demo, a multi-vendor, international demo which proved the reliability claims. Rick finishes by examining some case studies and with a Q&A.

Watch now!
Speakers

Merrick Ackermans Rick Ackermans
MVA Broadcast Consulting
RIST Activity Group Chair