Video: Proper Network Designs and Considerations for SMPTE ST-2110

Networks from SMPTE ST 2110 systems can be fairly simple, but the simplicity achieved hides a whole heap of careful considerations. By asking the right questions at the outset, a flexible, scalable network can be built with relative ease.

“No two networks are the same” cautions Robert Welch from Arista as he introduces the questions he asks at the beginning of the designs for a network to carry professional media such as uncompressed audio and video. His thinking focusses on the network interfaces (NICs) of the devices: How many are there? Which receive PTP? Which are for management and how do you want out-of-band/ILO access managed? All of these answers then feed into the workflows that are needed influencing how the rest of the network is created. The philosophy is to work backwards from the end-nodes that receive the network traffic.

Robert then shows how these answers influence the different networks at play. For resilience, it’s common to have two separate networks at work sending the same media to each end node. Each node then uses ST 2022-7 to find the packets it needs from both networks. This isn’t always possible as there are some devices which only have one interface or simply don’t have -7 support. Sometimes equipment has two management interfaces, so that can feed into the network design.

PTP is an essential service for professional media networks, so Robert discusses some aspects of implementation. When you have two networks delivering the same media simultaneously, they will both need PTP. For resilience, a network should operate with at least two Grand Masters – and usually, two is the best number. Ideally, your two media networks will have no connection between them except for PTP whereby the amber network can benefit from the PTP from the blue network’s grandmaster. Robert explains how to make this link a pure PTP-only link, stopping it from leaking other information between networks.

Multicast is a vital technology for 2110 media production, so Robert looks at its incarnation at both layer 2 and layer 3. With layer 2, multicast is handled using multicast MAC addresses. It works well with snooping and a querier except when it comes to scaling up to a large network or when using a number of switches. Robert explains that this because all multicast traffic needs to be sent through the rendez-vous point. If you would like more detail on this, check out Arista’s Gerard Phillips’ talk on network architecture.

Looking at JT-NM TR-1001, the guidelines outlining the best practices for deploying 2110 and associated technologies, Robert explains that multicast routing at layer 3 works much increases stability, enables resiliency and scalability. He also takes a close look at the difference between ‘all source’ multicasting supported by IGMP version 2 and the ability to filter for only specific sources using IGMP version 3.

Finishing off, Robert talks about the difficulties in scaling PTP since all the replies/requests go into the same multicast group which means that as the network scales, so does the traffic on that multicast group. This can be a problem for lower-end gear which needs to process and reject a lot of traffic.

Watch now!
Speaker

Robert Welch Robert Welch
Technical Solutions Lead
Arista Networks

Video: Keeping Time with PTP

Different from his talk of the same name we covered last week, Mike Waidson from Telestream explains the fundamentals of PTP joined by Leigh Whitcomb from Imagine Communications and Robert Welch from Arista. Very few PTP talks include a live BCMA quiz plus, with more time than the IP Showcase talks, this is a well-paced, deep look into the basics.

Mike starts by reviewing how the measurement of time has been more and more accurately measured with us now, typically using atomic clocks. In the TV-domain analogue video used signals for B&B which gave frequency information in the subcarrier and allowed frequency locking and to keep in sync with other signals. NTP has allowed computers and routers on IP networks to keep lock allowing sub-millisecond synchronisation over LANs. Now we have IEEE 1588 PTP which harnesses hardware for maximum precision providing sub-microsecond precision.

Traditionally an SPG would create many different synchronising signals, distributed by DAs. With PTP however, the idea is creating a single time signal on to the network (as well as older signals if necessary). Although, the important thing to remember is that PTP both sends and receives data from the endpoints. GPS is made from 31 active satellites of which only 4 are needed for a lock. But other systems such as the Russian GLONASS, the Chinese BAIDU Navigational system or the European Galileo can also be used, sometimes in conjunction with each other to improve locking speed or give resilience.

Mike and his co-hosts give an overview of the standards that make all this possible, starting with the PTP standard itself IEEE 1588-2019 which is added to by SMPTE 2059. The latter is two standards which, together ensure broadcast devices can usefully harness PTP which is a general, cross-industry standard and track all signals back to a single point in time in 1970. Whilst this may seem extreme, the benefit of doing this is that if we know that all possible types of signal were in-phase at this one point in time, we can extrapolate how each signal should be phased now and use that information to synchronise the system. Upcoming to PTP, we hear, are standardised ways to monitor PTP plus additional security around the standard.

The next section looks at the types of Grandmaster and the fact that each clock works in its own domain. Typically, all your system will be in the same domain, but if you have incompatible situations such as older Dante networks or if you want to have a testing environment, you can use domains to separate your equipment. The standard, as defined by SMPTE 2059 is 127.

Mike then looks at the different types of PTP Message types: Announce, Sync & Follow up, Delay Request, Delay Response and Management Messages (broadcast information, drop second, time zone etc.) He then brings some of these up in Wireshark and talks us through the structure and what can be found within.

The most original part of the talk is the live walkthrough of three different scenarios where Leigh and Robert talk through their thinking on which clock will be the grandmaster and for what reason. This comes down to their understanding of the order of precedence of the metrics such as the manually-allotted priority, then the class of clock, clock accuracy and other values. One value worth remembering is that if your clock is locked to GPS it will have a class of 6, but if it then loses lock, it will become 7.

PTP talks are not complete without an explanation of the sync message exchanges needed to actually determine the time (and the relative delays in order to compute it) as well as the secondary clock types, boundary and transparent. Boundary clocks take on much of the two-way traffic in PTP protecting the grandmasters from having to speak directly to all the, potentially, thousands of devices. Transparent switches, simply update the time announcements with the delay for the message to move through the switch. Whilst this is useful in keeping the timing accurate, it provides no protection for the grandmasters.

Before the talk finishes with a Q&A, the team finish by explaining the difference between operating in unicast and multicast, prioritising PTP traffic using the differentiated services protocol and adding redundancy to the PTP system.

Watch now!
Free registration required
Speakers

Robert Welch
Technical Solultions Lead,
Arista
Leigh Whitcomb Leigh Whitcomb
Principal Engineer.
Imagine
Michael Waidson Mike Waidson
Application Engineer,
Telestream

Video: IP Media Networks for Live Production

Building and controlling a network for SMPTE ST 2110 go hand in hand when it comes to planning an installation. As ST 2110 delivers all media essences separately, networks can easily end up carrying tens of thousands of flows emphasising the need for efficient network design and having a full understanding of the paths your media are using.

This video is co-presented by Nevion and Arista and starts by observing that the traditional difference between a LAN and WAN is being eroded leading as WANs get faster and better, we find that we can now deliver multi-location broadcast facilities which act similarly to if everything was co-located. Moreover, introduces Martin Walbum Media Function virtualisation which is enabled by network-connected equipment allowing for shared processing and shared control. For instance, it’s now possible to house all equipment in a datacentre and allow this to be used remotely maximising the utilisation of the equipment allowing a broadcaster to maximise the value of its purchases and minimise costs.

Arista’s Gerard Phillips takes a look at SDI systems to understand how we expect IP systems to behave and what we expect them to do. The system needs to deliver high throughput, instantaneous switching with low latency and no tolerance for failure. In order to do this, not only do we need to get the right software but to deliver the resilience we need, the network needs the correct architecture. Gerard takes us through the different options starting with a typical, flat, layer 2 networks and working up to leaf and spine along with a treatment of red, blue and purple networks.

Gerard recently did a deep dive on network design for live production for the IET. Take a look for much more detail on how to architect a network for uncompressed media.

Martin then looks at the need for orchestration. Broadcasters expect to deliver systems with, preferably, no downtime. As such, we’ve seen that network elements are typically duplicated as is the traffic which is delivered over two paths and SMPTE ST 2022-7. If you want to take something out of use for planned maintenance, it’s best to do that in a planned, ordered, way meaning you migrate flows away from it until it’s no longer in-circuit. Software-Defined Networks (SDNs), do exactly that. Martin walks us through the pros and cons of managing your network with IGMP and SDN. Gerard’s previous talk also looks at this in detail.

The video finishes with a look at which Arista switches can be used for media and a look at how Arista and Nevion implemented an ST 2110 network at Swiss broadcaster, tpc. This case study is presented in longer form in this video from the IP Showcase.

Watch now!
Free registration.
Speakers

Gerard Phillips Gerard Phillips
Systems Engineer,
Arista
Martin Walbum Martin Walbum
Senior Vice President of Solution Strategy,
Nevion

Video: Network Design for Live Production

The benefits of IP sound great, but many are held back with real-life concerns: Can we afford it? Can we plug the training gap? and how do we even do it? This video looks at the latter; how do you deploy a network good enough for uncompressed video, audio and metadata? The network needs to deal with a large number of flows, many of which are high bandwidth. If you’re putting it to air, you need reliability and redundancy. You need to distribute PTP timing, control and maintain it.

Gerard Philips from Arista talks to IET Media about the choices you need to make when designing your network. Gerard starts by reminding us of the benefits of moving to IP, the most tangible of which is the switching density possible. SDI routers can use a whole rack to switch over one thousand sources, but with IP Gerard says you can achieve a 4000-square router within just 7U. With increasingly complicated workflows and with the increasing scale of some broadcasters, this density is a major motivating factor in the move. Doubling down on the density message, Gerard then looks at the difference in connectivity available comparing SDI cables which have signal per cable, to 400Gb links which can carry 65 UHD signals per link.

Audio is always ahead of video when it comes to IP transitions so there are many established audio-over-IP protocols, many of which work at Layer 2 over the network stack. Using Layer 2 has great benefits because there is no routing which means that discovering everything on the network is as simple as broadcasting a question and waiting for answers. Discovery is very simple and is one reason for the ‘plug and play’ ease of NDI, being a layer 2 protocol, it can use mDNS or similar to query the network and display sources and destinations available within seconds. Layer 3-based protocols don’t have this luxury as some resources can be on a separate network which won’t receive a discovery request that’s simply broadcast on the local network.

Gerard examines the benefits of layer 2 and explains how IGMP multicast works detailing the need for an IGMP querier to be in one location and receiving all the traffic. This is a limiting factor in scaling a network, particularly with high-bandwidth flows. Layer 3, we hear, is the solution to this scaling problem bringing with it more control of the size of ‘failure domains’ – how much of your network breaks if there’s a problem.

The next section of the video gets down to the meat of network design and explains the 3 main types of architecture: Monolithic, Hub and spoke and leaf and spoke. Gerard takes time to discuss the validity of all these architectures before discussing coloured networks. Two identical networks dubbed ‘Red’ and ‘Blue’ are often used to provide redundancy in SMPTE ST 2110, and similar uncompressed, networks with the idea that the source generates two identical streams and feeds them over these two identical networks. The receiver receives both streams and uses SMPTE ST 2022-7 to seamlessly deal with packet loss. Gerard then introduces ‘purple’ networks, ones where all switch infrastructure is in the same network and the network orchestrator ensures that each of the two essence flows from the source takes a separate route through the infrastructure. This means that for each flow there is a ‘red’ and a ‘blue’ route, but overall each switch is carrying a mixture of ‘red’ and ‘blue’ traffic.

The beauty of using IGMP/PIM for managing traffic over your networks is that the network itself decides how the flows move over the infrastructure. This makes for a low-footprint, simple installation. However, without the ability to take into account individual link capacity, the capacity of the network in general, bitrate of individual flows and understanding the overall topology, there is very control over where your traffic is which makes maintenance and fault-finding hard and, more generally, what’s the right decision for one small part of the network is not necessarily the right decision for the flow or for the network as a whole. Gerard explains how Software-Defined Networking (SDN) address this and give absolute control over the path your flows take.

Lastly, Gerard looks at PTP, the Precision Time Protocol. 2110 relies on having the PTP in the flow, in the essence allowing flows of separate audio and video to have good lip-sync and to avoid phase errors when audio is mixed together (where PTP has been used for some time). We see different architectures which include two grandmaster clocks (GMs), discuss whether boundary clocks (BCs) or transparent clocks (TCs) are the way to go and examine the little security that is available to stop rogue end-points taking charge and becoming grandmaster themselves.

Watch now!
Speakers

Gerard Phillips Gerard Phillips
Systems Engineer,
Arista