Video: UHD and HDR at the BBC – Where Are We Now, and Where Are We Going? –

Has UHD been slow to roll out? Not so, we hear in this talk which explains the work to date in standardising, testing and broadcasting in UHD by the BBC and associated organisations such as the EBU.

Simon Thompson from BBC R&D points out that HD took decades to translate from an IBC demo to an on-air service, whereas UHD channels surfaced only two years after the first IBC demonstration of UHD video. UHD has had a number of updates from the initial resolution focused definition which created UHD-1, 2160p lines high and UHD-2 which is often called 8K. Later, HDR with Wide Colour Gamut (WCG) was added which allowed the image to much better replicate the brightnesses the eye is used to and almost all of the naturally-occurring colours; it turns out that HD TV (using REC.709 colour) can not reproduce many colours commonly seen at football matches.

In fact, the design brief for HDR UHD was specifically to keep images looking natural which would allow better control over the artistic effect. In terms of HDR, the aim was to have a greater range than the human eye for any one adpation state. The human eye can see an incredible range of brightnesses, but it does this by adapting to different brightness levels – for instance by changing the pupil size. When in a fixed state the eye can only access a subset of sensitivity without further adapting. The aim of HDR is to have the eye in one adaptation state due to the ambient brightness, then allow the TV to show any brightness the eye can then hold.

Simon explains the two HDR formats: Dolby’s PQ widely adopted by the film industry and the Hybrid Log-Gamma format which is usually favoured by broadcasters who show live programming. PQ, we hear from Simon, covers the whole range of the human visual system meaning that any PQ stream has the capability to describe images from 1 to 10,000 Nits. In order to make this work properly, the mix needs to know the average brightness level of the video which will not be available until the end of the recording. It also requires sending metadata and is dependent on the ambient light levels in the room.

Hybrid Log-Gamma, by contrast, works on the fly. It doesn’t attempt to send the whole range of human eye and no metadata needed. This lends itself well to delivering HDR for live productions. To learn more about the details of PQ and HLG, check out this video.

Simon outlines the extensive testing and productions done in UHD and looks at the workflows possible. The trick has been finding the best way to produce both an SDR and an HDR production at the same time. The latest version that Simon highlights had all the 70 cameras being racked in HDR by people looking at the SDR down-mix version. The aim here is to ensure that the SDR version looks perfect, as it still serves over 90% of the viewership. However, the aim is to move to a 100% HDR production with SDR being derived off the back of that without any active monitoring. The video ends with a look to the challenges yet to be overcome in UHD and HDR production.

Watch now!

Simon Thompson Simon Thompson
Senior R&D Engineer

Video: Banding Impairment Detection

It’s one of the most common visual artefacts affecting both video and images. The scourge of the beautiful sunset and the enemy of natural skin tones, banding is very noticeable as it’s not seen in nature. Banding happens when there is not enough bit depth to allow for a smooth gradient of colour or brightness which leads to strips of one shade and an abrupt change to a strip of the next, clearly different, shade.

In this Video Tech talk, SSIMWAVE’s Dr. Hojat Yeganeh explains what can be done to reduce or eliminate banding. He starts by explaining how banding is created during compression, where the quantiser has reduced the accuracy of otherwise unique pixels to very similar numbers leaving them looking the same.

Dr. Hojat explains why we see these edges so clearly. By both looking at how contrast is defined but also by referencing Dolby’s famous graph showing contrast steps against luminance where they plotted 10-bit HDR against 12-bit HDR and show that the 12-bit PQ image is always below the ‘Barten limit’ which is the threshold beyond which no contrast steps are visible. It shows that a 10-bit HDR image is always susceptible to showing quantised, i.e. banded, steps.

Why do we deliver 10-bit HDR video if it can still show banding? This is because in real footage, camera noise and film grain serve to break up the bands. Dr. Hojat explains that this random noise amounts to ‘dithering’. Well known in both audio and video, when you add random noise which changes over time, humans stop being able to see the bands. TV manufacturers also apply dithering to the picture before showing which can further break up banding, at the cost of more noise on the image.

How can you automatically detect banding? We hear that typical metrics like VMAF and SSIM aren’t usefully sensitive to banding. SSIMWAVE’s SSIMPLUS metric, on the other hand, has been created to also be able to create a banding detection map which helps with the automatic identification of banding.

The video finishes with questions including when banding is part of artistic intention, types of metrics not identifiable by typical metrics, consumer display limitations among others.

Watch now!

Dr. Hojat Yeganeh Dr. Hojat Yeganeh
Senior Member Technical Staff,

Video: Broadcast Fundamentals: High Dynamic Range

Update: Unfortunately CVP choose to take down this video within 12 hours of this article going live. But there’s good news if you’re interested in HDR. Firstly, you can find the outline and some of the basics of the talk explained below. Secondly, at The Broadcast Knowledge there are plenty of talks discussing HDR! Here’s hoping CVP bring the video back.

Why is High Dynamic Range is like getting a giraffe on a tube train? HDR continues its ascent. Super Bowl LIV was filmed in HDR this year, Sky in the UK has launched HDR and many of the big streaming services support it including Disney+, Prime and Netflix. So as it slowly takes its place, we look at what it is and how it’s achieved in the camera and in production.

Neil Thompson, an Sony Independent Certified Expert, takes a seat in the CVP Common Room to lead us through HDR from the start and explain how giraffes are part of the equation. Dynamic Range makes up two thirds of HDR, so he starts by explaining what it is with an analogy to audio. When you turn up the speakers so they start to distort, that’s the top of your range. The bottom is silence – or rather what you can hear over the quiet hiss that all audio systems have. Similarly in cameras, you can have bright pixels which are a different brightness to the next which represents the top of your range, and the dithering blacks which are the bottom of your range. In video, if you go too bright, all pixels become white even if the subject’s brightness varies which the equivalent of the audio distortion.

With the basic explanation out of the way, Neil moves on to describing the amount or size of dynamic range (DR) which can be done either in stops, contrast ratio or signal to noise ratio. He compares ‘stops’ to a bucket of water with some sludge at the bottom where the range is between the top of sludge and the rim of the bucket. One stop, he explains, is a halving of the range. With the bucket analogy, if you can go half way down the bucket and still hit clear water, you have 1 stop of dynamic range. If you can then go a quarter down with clean water, you have 2 stops. By the time you get to 1/32nd you have 5 stops. If going to 1/64 of the height of the bucket means you end up in the sludge, your system has 5 stops of dynamic range. Reducing the sludge so there’s clear water at 1/64th the height, which in cameras means reducing the noise in the blacks, is one way of increasing the dynamic range of your acquisition.

Update: Unfortunately CVP choose to take down this video within 12 hours of this article going live. But there’s good news if you’re interested in HDR. Firstly, you can find the outline and some of the basics of the talk explained below. Secondly, at The Broadcast Knowledge there are plenty of talks discussing HDR! Here’s hoping CVP bring the video back.

If you would like to know how lenses fit into the equation of gathering light, check out this talk from Cannon’s Larry Thorpe.

Neil looks next at the range of light that we see in real life from sunlight to looking at the stars at night. Our eye has 14 stops of range, though with our iris, we can see the equivalent of 24 stops. Similarly, cameras use an iris to regulate the light incoming which helps move the restricted dynamic range of the camera into the right range of brightness for our shot.

Of course, once you have gathered the light, you need to display it again. Displays’ ability to produce light is measured in ‘nits’, which is the amount of light per metre squared. Knowing how many nits a displays helps you understand the brightness it can show with 1000 nits, currently, being a typical HDR display. Of course, dynamic range is as much about the blacks as the brightness. OLED screens are fantastic at having low blacks, though their brightness can be quite low. LEDs, conversely, Neil explains, can go very bright but the blacks do suffer. You have to also take into account the location of a display device to understand what range it needs. In a dim gallery you can spend longer caring about the blacks, but many places are so bright, the top end is much more important than the blacks.

With the acquisition side explained, Neil moves on to transmission of HDR and it’s like getting a giraffe on a tube train. Neil relates the already familiar ‘log profiles’. There are two HDR curves, known as transfer functions, PQ from Dolby and HLG (Hybrig Log Gamma). Neil looks at which profiles are best for each part of the production workflow and then explains how PQ differs from HLG in terms of expressing brightness levels. In HLG, the brightest part of the signal tells the display device to output as brightly as it can. A PQ signal, however, reserves the brightest signal for 10,000 nits – far higher than displays available today. This means that we need to do some work to deal with the situation where your display isn’t as bright as the one used to master the signal. Neil discusses how we do that with metadata.

Finishing off the talk, Neil takes questions from the audience, but also walks through a long list of questions he brought along including discussing ‘how bright is too bright?’, what to look for in an engineering monitor, lighting for HDR and costs.

Watch now!

Neil Thompson Neil Thompson
Freelance Engineer & Trainer

Webinar: HDR Dynamic Mapping

HDR broadcast is on the rise, as we saw from the increased number of ways to watch this week’s Super Bowl in HDR, but SDR will be with us for a long time. Not only will services have to move seamlessly between SDR and HDR services, but there is a technique that allows HDR itself to be dynamically adjusted to better match the display its on.

Introduced in July 2019, content can now be more accurately represented on any specific display, particularly lower end TVs. Dynamic Mapping (DM), is applies to PQ-10 which is the 10-bit version of Dolby’s Perceptual Quantizer HDR format standardised under SMPTE ST-2084. Because HLG (ARIB STV-B67) works differently, it doesn’t need dynamic mapping. Dynamic Metadata to support this function is defined as SMPTE ST 2094-10, -40 and also as part of ETSI TS 103 433-2.

Stitching all of this together and helping us navigate delivering the best HDR is Dolby’s Jason Power and Virginie Drugeon from Panasonic in this webinar organised by DVB.

Register now!

Virginie Drugeon Virginie Drugeon
Senior Engineer for Digital TV Standardisation, Panasonic
Chair, DVB TM-AVC Group
Jason Power Jason Power
Senior Director, Commercial Partnerships and Standards, Dolby Laboratories
Chair, DVB CM-AVC Group