Video: Three Roads to Jerusalem

With his usual entertaining vigour, Will Law explains the differences to the three approaches to low-latency streaming: DASH, LHLS and LL-HLS from Apple. Likening them partly to religions that all get you to the same end, we see how they differ and some of the reasons for that.

Please note: Since this video was recorded, Apple has released a new draft of LL-HLS. As described in this great article from Mux, the update’s changes are

  • “Delivering shorter sub-segments of the video stream (Apple call these parts) more frequently (every 0.3 – 0.5s)
  • Using HTTP/2 PUSH to deliver these smaller parts, pushed in response to a blocking playlist request
  • Blocking playlist requests, eliminating the current speculative manifest request polling behaviour in HLS
  • Smaller, delta rendition playlists, which reduces playlist size, which is important since playlists are requested more frequently
  • Faster rendition switching, enabled by rendition reports, which allows clients to see what is happening in another playlist without requesting it in its entirety”[0]

Read the full article for the details and implications, some of which address some points made in the talk.

Furthermore, THEOplayer have released this talk explaining the changes and discussing implementation.

Anyone who saw last year’s Chunky Monkey video, will recognise Will’s near-Oscar-winning animation style as he sets the scene explaining the contenders to the low-latency streaming crown.

We then look at a bullet list of features across each of the three low latency technologies (note Apple’s recent update) which leads on to a discussion on chunked transfer delivery and the challenges of line-rate delivery. A simple view of the universe would say that the ideal way to have a live stream, encoded at a constant bitrate, would be to stream it constantly at that bitrate to the receiver. Whilst this is, indeed, the best way to go, when we stream we’re also keeping one eye on whether we need to change the bitrate. If we get more bandwidth available it might be best to upgrade to a better quality and if we suddenly have contested, slow wifi, it might be time for an emergency drop down to the lowest bitrate stream.

When you are delivered a stream as individual files, you can measure how long they take to download to estimate your available bandwidth. If a file can be downloaded at 1Gbps, then it should always arrive at 1Gbps. Therefore if it arrives at less than 1Gbps we know that there is a bandwidth restriction and can make adjustments. Will explains that for streams delivered with chunked transfer or in real time such as in LL-HLS, this estimation no longer works as the files simply are never available at 1Gbps. He then explains some of the work that has been undertaken to develop more nuanced ways of estimating available bandwidth. It’s well worth noting that the smaller the files you transfer, the less accurate the bandwidth estimation as TCP takes time to speed up to line rate so small 320ms-length video segments are not ideal for maximising throughput.

Continuing to look at the differences, we next look at request rates with DASH at 20 requests per second compared to LL-HLS at 720. This leads naturally to an analysis of the benefits of HTTP/2 PUSH technology used in LL-HLS and the savings that can offer. Will explores the implications, and some of the problems, with last year’s version of the LL-HLS spec, some of which have been mitigated since.

The talk concludes with some work Akamai has done to try and establish a single, common workflow with examples and a GitHub repository. Will shows how this works and the limitations of the approach and finishes with a look at the commonalities in approaches.

[0] From “Low Latency HLS 2: Judgment Day” https://mux.com/blog/low-latency-hls-part-2/

Watch now!
Speakers

Will Law Will Law
Chief Architect,
Akamai

Video: Online Streaming Primer

A trip down memory lane for some, a great intro to the basics of streaming for others, this video from IET Media looks at the history of broadcasting and how that has moved over the years to online streaming posing the question whether, with so many people watching online, is that broad enough to now be considered broadcast?

The first of a series of talks from IET Media, the video starts by highlighting that the recording of video was only practical 20 years after the first television broadcasts then talks about how television has moved on to add colour, resolution and move to digital. The ability to record video is critical to almost all of our use of media today. Whilst film worked well as an archival medium, it didn’t work well, at scale, for recording of live broadcasts. So in the beginning, broadcasting from one, or a few, transmitters was all there was.

Russell Trafford-Jones, from IET Media, then discusses the advent of streaming from its predecessor as file-based music in portable players, through the rise of online radio and how this naturally evolved into the urge to stream video in much the same way.

Being a video from the IET video, Russell then looks at the technology behind getting video onto a network and over the internet. He talks about cutting the stream into chunks, i.e. small files, and how sending files can create a seamless stream of data. One key advantage of this method is Adaptive BitRate (ABR) meaning being able to change from one quality level, to another which typically means changing bitrate to adapt to changing network conditions.

Finishing by talking about the standards available for online streaming, this talk is a great introduction to streaming and an important part of anyone’s foundational understanding of broadcast and streaming.

Watch now!

This video was produced by IET Media, a technical network within the IET which runs events, talks and webinars for networking and education within the broadcast industry. More information

Speakers

Russell Trafford-Jones Russell Trafford-Jones
Exec Member, IET Media
Manager, Support & Services, Techex
Editor, The Broadcast Knowledge

Webinar: Broadcaster VOD: Delivering the next-generation of catch-up viewing

With Amazon, Netflix and so many other VOD services available, broadcasters like the BBC and Discovery are investing a lot in their own VOD services, known as Broadcaster VOD (BVOD) in order to maintain relevance, audiences and revenue.

Commercial broadcasters such as Sky, ITV and Channel 4 are trying hard to attract advertisers and “have all launched new ad formats, struck deals with ad tech vendors to build marketplaces and set up programmatic teams to manage them” according to a report from digiday.com. As such this means that the battle for advertisers wallets is moving more towards VOD from linear.

Date: Thursday 30 January, 14:00 GMT / 9 a.m. ET

With this in mind, IBC365 will discuss the business models, platforms and strategies being used by BVOD platforms. They will look at the BBC’s move to build a deep content library of free-to-view box sets, and to the importance of data, personalisation and addressable advertising models.

Further more, this webinar will talk about the commercial and technical requirements to build a BVOD to a standard that’s going to stand on its own in this increasingly crowded, but well-funded marketplace.

Register now!
Speakers

Richard Davidson-Houston Richard Davidson-Houston
Founder,
Finally Found Ltd.
Roma Kojima Roma Kojima
Senior Director OTT Video (CBC Gem),
Canadian Broadcasting Corporation
Niels Baas Niels Baas
Managing Director, NLZIET

Video: Delivering Better Manifests with Effective VMAF

Measuring video quality is done daily around the world between two video assets. But what happens when you want to take the aggregate quality of a whole manifest? With VMAF being a well regarded metric, how can we use that in an automatic way to get the overview we need?

In this talk, Nick Chadwick from Mux shares the examples and scripts he’s been using to analyse videos. Starting with an example where everything is equal other than quality, he explains the difficulties in choosing the ‘better’ option when the variables are much less correlated. For instance, Nick also examines the situations where a video is clearly better, but where the benefit is outweighed by the minimal quality benefit and the disproportionately high bitrate requirement.

So with all of this complexity, it feels like comparing manifests may be a complexity too far, particularly where one manifest has 5 renditions, the other only 4. The question being, how do you create an aggregate video quality metric and determine whether that missing rendition is a detriment or a benefit?

Before unveiling the final solution, Nick makes the point of looking at how people are going to be using the service. Depending on the demographic and the devices people tend to use for that service, you will find different consumption ratios for the various parts of the ABR ladder. For instance, some services may see very high usage on 2nd screens which, in this case, may take low-resolution video and also lot of ‘TV’ size renditions at 1080p50 or above with little in between. Similarly other services may seldom ever see the highest resolutions being used, percentage-wise. This shows us that it’s important not only to look at the quality of each rendition but how likely it is to be seen.

To bring these thoughts together into a coherent conclusion, Nick unveils an open-source analyser which takes into account not only the VMAF score and the resolution but also the likely viewership such that we can now start to compare, for a given service, the relative merits of different ABR ladders.

The talk ends with Nick answering questions on the tendency to see jumps between different resolutions – for instance if we over-optimise and only have two renditions, it would be easy to see the switch – how to compare videos of different resolutions and also on his example user data.

Watch now!
Speakers

Nick Chadwick Nick Chadwick
Software Engineer,
Mux