Video: Integrating CMAF Into A VOD Workflow

CMAF is often seen as the best hope for streaming to match the latency of broadcast. Fully standards based, many see this as the best route over Apple’s LL-HLS. Another benefit of it over LL-HLS is that it’s already a completed standard with growing support.

This talk from Tomas Bacik starts by explaining CMAF to us. Standing for the Common Media Application Format, it’s based on the standardised ISOBMFF container format and whilst CMAF isn’t by default low-latency, it is flexible enough to deliver just that. However, as Tomas from CDN77 points out, there are other major benefits in terms of its use of the Common Encryption format, reduces storage fees and more.

MPEG DASH is a commonly found streaming format based on ISO BMFF. It has always had the benefit of supporting other codecs such as HEVC and AV1 over HLS which is an AVC-only specification. CMAF is an extension of MPEG DASH which goes one step further in that it can deal with both HLS-style manifest files (.hls) as well as MPEG DASH format (.mpd) inheriting, of course, the multi-codec ability of DASH itself.

Next is central theme of the talk, looking at VoD workflows showing how CMAF fits in and, indeed, changes workflows for the better. CMAF directly impacts packaging, storage and CDN which is where we focus now. Given that some devices can play HLS and some can play DASH, if you try to serve both, you will double your requirements of packaging, storage etc. Dynamic packaging allows for immediately repackaging your chunks into either HLS or DASH as needed. Whilst this reduces the storage requirements, it increases processing and also increases the time to first byte. As you might expect, using CMAF throughout, Tomas explains in this talk, allows you to package once and store once which solves these problems.

Tomas continues by explaining the DRM abilities of CMAF including AES-CBC and finishes by taking questions from the audience.

Watch now!
See Streamflow’s blog post supporting the talk
Speakers

Tomas Bacik Tomas Bacik
VP of Product Development, Streamflow by CDN77
CDN77

Video: Online Streaming Primer

A trip down memory lane for some, a great intro to the basics of streaming for others, this video from IET Media looks at the history of broadcasting and how that has moved over the years to online streaming posing the question whether, with so many people watching online, is that broad enough to now be considered broadcast?

The first of a series of talks from IET Media, the video starts by highlighting that the recording of video was only practical 20 years after the first television broadcasts then talks about how television has moved on to add colour, resolution and move to digital. The ability to record video is critical to almost all of our use of media today. Whilst film worked well as an archival medium, it didn’t work well, at scale, for recording of live broadcasts. So in the beginning, broad casting from one, or a few, transmitters was all there was.

Russell Trafford-Jones, from IET Media, then discusses the advent of streaming from its predecessor as file-based music in portable players, through the rise of online radio and how this naturally evolved into the urge to stream video in much the same way.

Being a video from the IET video, Russell then looks at the technology behind getting video onto a network and over the internet. He talks about cutting the stream into chunks, i.e. small files, and how sending files can create a seamless stream of data. One key advantage of this method is Adaptive BitRate (ABR) meaning being able to change from one quality level, to another which typically means changing bitrate to adapt to changing network conditions.

Finishing by talking about the standards available for online streaming, this talk is a great introduction to streaming and an important part of anyone’s foundational understanding of broadcast and streaming.

Watch now!

This video was produced by IET Media, a technical network within the IET which runs events, talks and webinars for networking and education within the broadcast industry. More information

Speakers

Russell Trafford-Jones Russell Trafford-Jones
Exec Member, IET Media
Manager, Support & Services, Techex
Editor, The Broadcast Knowledge

Video: Delivering Better Manifests with Effective VMAF

Measuring video quality is done daily around the world between two video assets. But what happens when you want to take the aggregate quality of a whole manifest? With VMAF being a well regarded metric, how can we use that in an automatic way to get the overview we need?

In this talk, Nick Chadwick from Mux shares the examples and scripts he’s been using to analyse videos. Starting with an example where everything is equal other than quality, he explains the difficulties in choosing the ‘better’ option when the variables are much less correlated. For instance, Nick also examines the situations where a video is clearly better, but where the benefit is outweighed by the minimal quality benefit and the disproportionately high bitrate requirement.

So with all of this complexity, it feels like comparing manifests may be a complexity too far, particularly where one manifest has 5 renditions, the other only 4. The question being, how do you create an aggregate video quality metric and determine whether that missing rendition is a detriment or a benefit?

Before unveiling the final solution, Nick makes the point of looking at how people are going to be using the service. Depending on the demographic and the devices people tend to use for that service, you will find different consumption ratios for the various parts of the ABR ladder. For instance, some services may see very high usage on 2nd screens which, in this case, may take low-resolution video and also lot of ‘TV’ size renditions at 1080p50 or above with little in between. Similarly other services may seldom ever see the highest resolutions being used, percentage-wise. This shows us that it’s important not only to look at the quality of each rendition but how likely it is to be seen.

To bring these thoughts together into a coherent conclusion, Nick unveils an open-source analyser which takes into account not only the VMAF score and the resolution but also the likely viewership such that we can now start to compare, for a given service, the relative merits of different ABR ladders.

The talk ends with Nick answering questions on the tendency to see jumps between different resolutions – for instance if we over-optimise and only have two renditions, it would be easy to see the switch – how to compare videos of different resolutions and also on his example user data.

Watch now!
Speakers

Nick Chadwick Nick Chadwick
Software Engineer,
Mux

Video: WAVE (Web Application Video Ecosystem) Update

With wide membership including Apple, Comcast, Google, Disney, Bitmovin, Akamai and many others, the WAVE interoperability effort is tackling the difficulties web media encoding, playback and platform issues utilising global standards.

John Simmons from Microsoft takes us through the history of WAVE, looking at the changes in the industry since 2008 and WAVE’s involvement. CMAF represents an important milestone in technology recently which is entwined with WAVE’s activity backed by over 60 major companies.

The WAVE Content Specification is derived from the ISO/IEC standard, “Common media application format (CMAF) for segmented media”. CMAF is the container for the audio, video and other content. It’s not a protocol like DASH, HLS or RTMP, rather it’s more like an MPEG 2 transport stream. CMAF nowadays has a lot of interest in it due to its ability to delivery very low latency streaming of less than 4 seconds, but it’s also important because it represents a standardisation of fMP4 (fragmented MP4) practices.

The idea of standardising on CMAF allows for media profiles to be defined which specify how to encapsulate certain codecs (AV1, HEVC etc.) into the stream. Given it’s a published specification, other vendors will be able to inter-operate. Proof of the value of the WAVE project are the 3 amendments that John mentions issued from MPEG on the CMAF standard which have come directly from WAVE’s work in validating user requirements.

Whilst defining streaming is important in terms of helping in-cloud vendors work together and in allowing broadcasters to more easily build systems, its vital the decoder devices are on board too, and much work goes into the decoder-device side of things.

On top of having to deal with encoding and distribution, WAVE also specifies an HTML5 APIs interoperability with the aim of defining baseline web APIs to support media web apps and creating guidelines for media web app developers.

This talk was given at the Seattle Video Tech meetup.

Watch now!
Slides from the presentation
Check out the free CTA specs

Speaker

John Simmons John Simmons
Media Platform Architect,
Microsoft