Video: How to succeed in OTT in 2020

With the streaming market maturing, keeping ahead of competitors requires a layered strategy, particularly for entrants to the market who don’t have Amazon levels of funding. There are success stories out there, so what are the ingredients for success? This recored webinar looks at these questions an shares advice on succeeding in today’s market.

Rahul Patel from Ampere Analysis is first giving an overview of the OTT/streaming market. Within the UK and the US, we now see, he explains, 35% of subscriptions belonging to those 45 and older thus the market is maturing and increasingly offering a wider choice of genres to a wider selection of people. In general, services stand out through their content which is often done through original productions with Netflix now investing almost the same in original programming as the BBC does across all its channels. Rahul shows statistics showing that the percentage of non-US productions is increasing with Netflix and Amazon prime both trying to create programming which is more appealing to their non-US viewers.

An alternative to original programming is to focus your offering. For example, services such as AcornTV focus on UK crime drama, Crunchyroll is focussed on Japanese-made programming and Mubi is 100% films. Though in one market, a very narrow niche may not provide the customers needed to make the service viable, but expanded across all markets, that can all change. Another way services are attracting subscribers, Rahul details, is through bundling either with multiple services being discounted when purchased together, free subscription with hardware purchase or partnerships between big players such as network operators.

As the stacking of services continues to increase, Rahul foresees a future role for aggregators and simplifying the subscription to one payment. Aggregation would involve a single search interface unifying disparate services and could be provided by giants such as Apple and Amazon.

US Industry Avg SCOD Uplifts. Source Reemah Sakaan, BritBox

Next up is Reemah Sakaan from BritBox, which launched in the US in 2017, now in the UK as of 2019 and soon Australia. She explains their journey to market discussing how it can take long time to get rights and forge a true identity, but once that is done, an easy to understand offering can be quickly taken up by viewers. Reemah notes that Covid-19 has pushed a hugh change in viewership both in terms of viewing hours but also subscribers and underlined the importance of their embedded live feed which allows them to go live with special events such as the Royal Wedding along side the traditional VoD offering. This helps them be a unique service and maintain differentiation from competitors.

The last of the presentations is from Simon James from Applicaster. Applicaster’s focus is on providing apps for streaming services. Major issues are in scaling your app on all platforms and trying to manage testing across different OS types and versions. Simon says that the effort needed to keep up with all of this can sap energy and innovation from the team. It also makes it hard to be agile and respond to the market and viewers within the pandemic being a fantastic example of why.

The video ends with a Q&A covering increasing subscriber churn which may lead to annual discounts rather than a monthly subscription. Reemah explains that the first 100 days is key in keeping subscribers. Other questions cover the need for consistent user experience across platforms, approach to expansion and the applicability of your content to your viewers.

Watch now!
Speakers

Reemah Sakaan Reemah Sakaan
Group Director, SVOD at ITV
Chief Brand and Creative Development Officer, BritBox Global
Rahul Patel Rahul Patel
Analyst,
Ampere Analysis
Simon James Simon James
Head of Sales Engineering,
Applicaster

Video: Tech Talks: Low-Latency Live Streaming

There are a number of techniques for achieving low-latency streaming. This talk is one of the few which introduces them in easy to understand ways and then puts them in context briefly showing the manifests or javascript examples of how these would be seen in the wild. Whilst there are plenty of companies who don’t need low-latency streaming, for many it’s a key part of their offering or it’s part of the business model itself. Knowing the techniques in play is to better understand internet streaming in general.

Jameson Steiner from Bitmovin starts by explaining why there is a motivation to cut the latency. One big motivation, aside from the standard live sports examples, is user-generated content like on Twitch where it’s very clear to the streamer, and quite off-putting, when there is large amounts of delay. Whilst delay can be adapted to, the more there is the less interaction is possible. In this situation, it’s the ‘handwaving’ latency that comes in to play. You want the hand on the screen to wave pretty much at the same time as your hand waves in front of the camera. Jameson places different types of distribution on a chart showing latency and we see that low-latency of 5 seconds or less will not only match traditional TV broadcasts, but also work well for live streamers.

Naturally, to fix a problem you need to understand the problem, so Jameson breaks down the legacy methods of delivery to show why the latency exists. The issue comes down to how video is split into sections, say 6 seconds, so that the player downloads a section at a time, reassembles and plays them. Looking from the player’s perspective, if the network suddenly broke or reduced its throughput, it makes sense to have several chunks in reserve. Having three 6-second chunks, a sensible precaution, makes you 18 seconds behind the curve from the off.

Clearly reducing the segement size is a winner in this scenario. Three 3 second segments will give you just 9 seconds latency; why not go to 1 second? Well encoding inefficiency is one reason. If you reduce the amount of time a temporal codec has of a video, its efficiency will drop and bitrate will increase to maintain quality. Jameson explains the other knock-on effects such as CDN inefficiencies and network requests. The standardised way to avoid these problems is to use CMAF (Common Media Application Format) which is based on MPEG DASH and ISO BMFF. CMAF, and DASH in general, has the benefit of coming from a standards body whose aim was to remove vendor lock-in that may be felt with HLS and was certainly felt with RTMP. Check out MPEG’s short white paper on the topic (zipped .docx file)

CMAF uses chunked transfer meaning that as the encoder writes the data to the disk, the web server sends it to the client. This is different to the default where a file is only sent after it’s been completely written. This has the effect of the not having to wait up to 6 seconds to a 6-second chunk to start being sent; the download time also needs to be counted. Rather, almost as soon as the chunk has been finished by the encoder, it’s arrived at the destination. This is a feature of HTTP 1.1 and after so is not new, but it still needs to be enabled and considered as part of the delivery.

CMAF goes beyond simple HTTP 1.1 chunked transfer which is a technique used in low-latency HLS, covered later, by creating extra structure within the 6-second segment (until now, called a chunk in this article). This extra structure allows the segment to be downloaded in smaller chunks decoupling the segment length from the player latency. Chunked transfer does cause a notable problem however which has not yet been conclusively solved. Jameson explains how traditionally each large segment typically arrives faster than realtime. By measuring how fast it arrives, given the player knows the duration, it can estimate the bandwidth available at that time on the network. With chunked transfer, as we saw, we are receiving data as it’s being created. By definition, we are now getting it in realtime so there is no opportunity to receive it any quicker. The bandwidth estimation element, as shown the presentation, is used to work out if the player needs to go down or could go up to another stream at a different bitrate – part of standard ABR. So the catastrophe here is the going down in latency has hampered our ability to switch bitrates and whilst the viewer can see the video close to real-time, who’s to say if they are seeing it at the best quality?

Low-Latency HLS/DASH is a way of extending DASH and HLS without using CMAF. Jameson explains some techniques such as advertising segments in advance to allow players to pre-request. It also relies on finding the compromise point of encoding inefficiency vs segment length, typically held to be around 2 seconds, to minimise the latency. At this point we start seeing examples of the techniques in manifests and javascript allowing us to understand how this is actually signalled and implemented.

Apple is on its second major revision of LL-HLS which has responded to many of the initial complaints from the community. Whilst it can use HTTP/2 to help push segments out, this caused problems in practice so it can now preload hints, as Jameson explains in order to remove round-trip times from requests. Jameson looks at the other of Apple’s techniques and shows how they look in manifest files.

The final section looks at problems in implementing these features such as chunks being fragmented across TCP packets, the bandwidth estimation question and dealing with playback speed in order to adjust the players position in time – speed-ups and slow-downs of 5 to 10% can be possible depending on content.

Watch now!
Download the presentation
Speaker

Jameson Steiner Jameson Steiner
Software Engineer,
Bitmovin

Video: Reducing peak bandwidth for OTT

‘Flattening the curve’ isn’t just about dealing with viruses, we learn from Will Law. Rather, this is one way to deal with network congestion brought on by the rise in broadband use during the global lockdown. This and other key ways such as per-title encoding and removing the top tier are just two other which are explored in this video from Akamai and Bitmovin.

Will Law starts the talk explaining why congestion happens in a world where ABR (adaptive bitrate streaming) is supposed to deal with this. With Akamai’s traffic up by around 300%, it’s perhaps not a surprise there’s a contest for bandwidth. As not all traffic is a video stream, congestion will still happen when fighting with other, static, data transfers. However deeper than that, even with two ABR streams, the congestion protocol in use has a big impact as will shows with a graph showing Akamai’s FastTCP and BBR where BBR steals all the bandwidth rather than ‘playing fair’.

Using a webpage constructed for the video, Will shows us a baseline video playback and the metrics associated with it such as data transferred and bitrate which he uses to demonstrate the different benefits of bitrate production techniques. The first is covered by Bitmovin’s Sean McCarthy who explains Bitmovin’s per-title encoding technology. This approach ensures that each asset has encoder settings tuned to get the best out of the content whilst reducing bandwidth as opposed to simply setting your encoder to a fairly-high, safe, static bitrate for all content no matter how complex it is. Will shows on the demo that the bitrate reduces by over 50%.

Swapping codecs is an obvious way to reduce bandwidth. Unlike per-title encoding which is transparent to the end-user, using AV1, VP9 or HEVC requires support by the final device. Whilst you could offer multiple versions of your assets to make sure you still cover all your players despite fragmentation, this has the downside of extra encoding costs and time.

Will then looks at three ways to reduce bandwidth by stopping the highest-bitrate rendition from being used. Method one is to manually modify the manifest file. Method two demonstrates how to do so using the Bitmovin player API, and method three uses the CDN itself to manipulate the manifests. The advantage of doing this in the CDN is because this allows much more flexibility as you can use geolocation rules, for example, to deliver different manifests to different locations.

The final method to reduce peak bandwidth is to use the CDN to throttle download speed of the stream chunks. This means that while you may – if you are lucky – have the ability to download at 100Mbps, the CDN only delivers 3- or 5-times the real-time bitrate. This goes a long way to smoothing out the peaks which is better for the end user’s equipment and for the CDN. Seen in isolation, this does very little, as the video bitrate and the data transferred remain the same. However, delivering the video in this much more co-operative way is much more likely to cause knock-on problems for other traffic. It can, of course, be used in conjunction with the other techniques. The video concludes with a Q&A.

Watch now!
Speakers

Will Law Will Law
Chief Architect,
Akamai
Sean McCarthy Sean McCarthy
Technical Product Marketing Manager,
Bitmovin