Webinar: Cloud Ingest

RIST and SRT are gaining more and more traction as they solve the reliability question over internet contribution. Promising cheaper costs than dedicated circuits, so much of our life uses the internet, it seems logical that it helps connect broadcasts as much as it does video conferences.

SRT and RIST are both protocols which allow streaming of video and other media over networks. If any packets go missing then the receiver will let the sender know and the sender will retransmit the missing data. All being well, these missing packets will arrive in time and no one will know that any data loss took place.

SRT was started by Haivision and is now an open source collaboration with a public repository and slack workspace. It goes beyond simple retransmission and actually offers an encrypted link which is so important when it comes to sports and other high value content.

RIST is being developed by the Video Services Forum (VSF) and the specifcation TR-06 defines how it works. This is is released as a freely-available specification and implementations based on the first release were shown at IBC2018. For a video on RIST, check out this talk from Merrick Ackermans

The RIST working group comprises people from Haivision, Zixi, NetInsight and other companies many of whom also have similar technologies. So the question is why is RIST of so much interest and what are the differences and benefits to SRT?

This Webinar from Net Insight sets out to answer just this question as we’ll as looking to the future to see what is yet to come on the RIST roadmap.

Register now!
Speakers

Love Thyresson Love Thyresson
Head of Internet Media Transport,
Net Insight
Alexander Sandström Alexander Sandström
Head of Product Marketing & Co-chair of RIST Forum,
Net Insight

Video: From WebRTC to RTMP

With the demise of RTMP, what can WebRTC – its closest equivalent – learn from it? RTC stands for Real-Time Communications and hails from the video/voice teleconferencing world. RTC traditionally has ultra-low latency (think sub-second; real-time) so as broadcasters and streaming companies look to reduce latency it’s the obvious technology to look at. However, RTC comes from a background of small meetings, mixed resolutions, mixed bandwidths and so the protocols underpinning it can be lacking what broadcast-style streamers need.

Nick Chadwick from MUX looks at the pros and cons of the venerable RTMP (Real Time Messaging Protocol). What was in it that was used and unused? What did need that it didn’t have? What gap is being left by its phasing out?

Filling these increasing gaps is the focus of the streaming community and whether that comes through WebRTC, fragmented MP4 delivered over web sockets, Low-Latency HLS, Apple’s Low-Latency HLS, SASH, CMAF or something else…it still needs to be fulfilled.

Nick finishes with two demos which show the capabilities of WebRTC which outstrip RTMP – live mixing on a browser. WebRTC clearly has a future for more adventurous services which don’t simply want to deliver a linear channel to sofa-dwelling humans. But surely Nick’s message is WebRTC needs to step up to the plate for broadcasters, in general, to enable them to achieve < 1-second end-to-end latency in a way which is compatible with broadcast workflows.

Watch now!
Speaker

Nick Chadwick Nick Chadwick
Software Engineer,
Mux

Video: A Technical Overview of AV1

If there’s any talk that cuts through the AV1 hype, it must be this one. The talk from the @Scale conference starts by re-introducing AV1 and AoM but then moves quickly on to encoding techniques and the toolsets now available in AV1.

Starting by looking at the evolution from VP9 to AV1, Google engineer Yue Chen looks at:

  • Extended Reference Frames
  • Motion Vector Prediction
  • Dynamic Motion Vector Referencing
  • Overlapped Block Motion Compensation
  • Masked Compound Prediction
  • Warped Motion Compensation
  • Transform (TX) Coding, Kernels & Block Partitioning
  • Entropy Coding
  • AV1 Symbol Coding
  • Level-map TX Coefficient Coding
  • Restoration and Post-Processing
  • Constrained Dire. Enhancement Filtering
  • In-loop restoration & super resolution
  • Film Grain Synthesis

The talk finishes by looking at Compression Efficiency of AV1 against both HEVC (x.265) & VP9 (libvpx) then coding complexity in terms of speed plus what’s next on the roadmap!

Watch now!

Speaker

Yue Chen Yue Chen
Senior AV1 Engineer,
Google

Webinar: Scaling Video Delivery

There is no doubt that streaming video is here to stay. Every month, more consumers log into and subscribe to one or more OTT services. But as those services grow beyond geographical borders, providers are forced to ensure that their offerings can meet the demands of a swelling user base located around the world. Given that this involves employing the public Internet to deliver video to different pockets of the globe, OTT operators often struggle with implementing the best video delivery architecture: what infrastructure to purchase, to install, where & which partners to employ, and how to ensure the best possible viewer experience. This webinar explores some of the proven methods for scaling video delivery as well as best practices employed by some of the world’s biggest streamers.

Featuring:

Guillaume Bichot Guillaume Bichot
Head of Exploration,
Broadpeak
Thierry Fautier Thierry Fautier
President-Chair at Ultra HD Forum,
VP Video Strategy, Harmonic
Brent Yates Brent Yates
CTO,
HellaStorm
Jason Thibeault Jason Thibeault
Executive Director,
Streaming Video Alliance
Marc Baillavoine Marc Baillavoine
CEO,
Quortex
Wayne Rowe
Enterprise Sales Manager,
CDNetworks