Video: AV1 at Netflix

Netflix have continually been pushing forward video compression and analysis because their assets are played so many times that every bit saved is real money saved. VMAF is a great example of Netflix’s desire to push the state of the art forward. Developed by Netflix and two universities, this new objective metric allowed them to better evaluate the quality of videos using computer analysis and has continued to be the foundation of their work since.

One use of VMAF has been to verify the results of Netflix’s Per-Shot Encoding method which alters encoding parameters for each shot of the film rather than using a fixed set of parameters for the whole film. The Broadcast Knowledge has featured talks on their previous technique, per-title encoding (among others).

AV1, however must be the most famous innovation that Neflix is behind. A founding member of the Alliance for Open Media (AoM), Netflix saw a need a for a better codec and by making an open one, which also played to the needs of other internet giants such as Google, was a good way to create a vibrant community around it driving submissions to the codec itself but also, it is hoped, in the implementation and adoption.

In this two-part talk, LiWei Guo starts off by explaining the ways in which AV1 will be used by Netflix. Since this talk took place, Netflix has started streaming in AV1 to Android clients. LiWei points out that AV1 supports 10-bit video as standard – a notable difference from other codecs like AVC and HEVC. This allows Netflix to use 10-bit without worrying about decoder compatibility and he shows examples of skies and water which are significantly by the use of 10-bit.

Another feature of AV1 is the Film Grain synthesis which seeks to improve encoding efficiency by removing the random film grain of the source during the encode process then inserting a similar random noise on top to recreate the same look and feel. As anything random can’t be predicted, noise such of this is very wasteful for a codec to try and encode, therefore it’s not <a surprise that this can result in as much as a 30% reduction in bitrate. Before concluding, LiWei briefly explains per-shot encoding then shows data showing the overall improvements.

Andrey Norkin, also from Netflix explains their work with Intel on the SVT-AV1 software video encoder which leverages Intel’s SVT technology, a framework optimised for Xeon chips for video encoding and analysis. Netflix’s motivations are to further increase adoption by delivering a data centre-ready, optimised encoder and to create an AV1 encoder they can use to support their own internal research activities (did someone say AV2?). SVT allows for parallelisation, important for any computer nowadays with so many cores available.

Finishing up, Andrey points us to the Github repository, lets us know the development statement (as of November 2019) and looks at the speed increases that have taken off, comparing SVT-AV1 against the reference libaom encoder.

Watch now!
Speakers

Andrey Norkin Andrey Norkin
Senior Research Scientist,
Netflix
LiWei Guo LiWei Guo
Senior Software Engineer,
Netflix

Video: 2019 What did I miss? Comparing AV1, VP9, HEVC, & H.264

The ever popular, always analytical Jan Ozers spends time here evaluating the quality of these codecs against the ever-present h.264. As the team here at The Broadcast Knowledge takes a short break, we’re recapping the most popular posts of the year. Interestingly, this post is from over a year ago but is still seeing top-10 traffic. This is no surprise since, as I said in my interview with SMPTE on the subject of codecs, everyone touches codecs in some way even if only at home. So it’s no surprise there is such an interest.

Jan takes a careful approach to explaining the penetration adn abilities of h.264 in order to see at what point we can break even and start to ebenefit from using alternative codecs. He then takes each codec in turn looking at it its pros and cons to paint a picture of the options available for those willing and able to go beyond h.264.

Read the original article or Watch now!
Speakers

Jan Ozer Jan Ozer
Industry Analyst
Streaming Learning Center

Video: Towards a healthy AV1 ecosystem for UGC platforms


Twitch is an ambassador for new codecs and puts its money where its mouth is; it is one of the few live streaming platforms which streams with VP9 – and not only at, with cloud FPGA acceleration thanks to Xylinx’s acquisition of NGCODEC.

As such, they have a strong position on AV1. With such a tech savvy crowd, they stream most of their videos at the highest bitrate (circa 6mbps). With millions of concurrent videos, they are highly motivated to reduce bandwidth where they can and finding new codecs is one way to do that.

Principal Research Engineer, Yueshi discusses Twitch’s stance on AV1 and the work they are doing to contribute in order to get the best product at the end of the process which will not only help them, but the worldwide community. He starts by giving an overview of Twitch which, while many of us are familiar with the site, the scale and needs of the site may be new information and drive the understanding of the rest of the talk.

Reduction in bitrate is a strong motivator, but also the fact that supporting many codecs is a burden. AV1 promises a possibility of reducing the number of supported codecs/formats. Their active contribution in AV1 is also determined by the ‘hand wave’ latency; a simple method of determining the approximate latency of a link which is naturally very important to a live streaming platform. This led to Twitch submitting a proposal for SWITCH_FRAME which is a technique, accepted in AV1, which allows more frequent changes by the player between the different quality/bitrate streams available. This results in a better experience for the user and also reduced bitrate/buffers.

YueShi then looks at the projected AV1 deployment roadmap and discusses when GPU/hardware support will be available. The legal aspect of AV1 – which promises to be a free-to-use codec is also discussed with the news that a patent pool has formed around AV1.

The talk finishes with a Q&A.

Watch now!

Speakers

Yueshi Shen Yueshi Shen
Principal (Level 7) Research Engineer & Engineering Manager,
Twitch

Video: A Technical Overview of AV1

If there’s any talk that cuts through the AV1 hype, it must be this one. The talk from the @Scale conference starts by re-introducing AV1 and AoM but then moves quickly on to encoding techniques and the toolsets now available in AV1.

Starting by looking at the evolution from VP9 to AV1, Google engineer Yue Chen looks at:

  • Extended Reference Frames
  • Motion Vector Prediction
  • Dynamic Motion Vector Referencing
  • Overlapped Block Motion Compensation
  • Masked Compound Prediction
  • Warped Motion Compensation
  • Transform (TX) Coding, Kernels & Block Partitioning
  • Entropy Coding
  • AV1 Symbol Coding
  • Level-map TX Coefficient Coding
  • Restoration and Post-Processing
  • Constrained Dire. Enhancement Filtering
  • In-loop restoration & super resolution
  • Film Grain Synthesis

The talk finishes by looking at Compression Efficiency of AV1 against both HEVC (x.265) & VP9 (libvpx) then coding complexity in terms of speed plus what’s next on the roadmap!

Watch now!

Speaker

Yue Chen Yue Chen
Senior AV1 Engineer,
Google