Video: State of IP Video Networking & Distribution


Andy Bechtolsheim from ARISTA Networks gives us an in-depth look at the stats surrounding online streaming before looking closer to home at uncompressed SMPTE ST 2110 productions within the broadcaster premises. Andy tracks the ascent of online streaming with over 60% of internet traffic being video. Recently, the number of consumer devices which have been incorporating streaming functions, whether a Youtube/Netflix app or a form of gaming live streaming has only continued to grow. Within 5 years, it’s estimated that each US household, on average, will be paying for over three and a quarter SVOD subscriptions.

SARS-CoV-2 has had its effect on streaming with Netflix already achieving their 2023 subscriber number targets and the 8-month-old Disney+ already having over 50 million subscribers over the 15 territories they had launched in by May; it’s currently forecast that there will be 1.1 billion SVOD subscriptions in 2025 globally.

The television still retains pride of place in the US both in terms of linear TV share and the place to consume video in general, but Andy shows that the number of households with a subscription to linear TV has dropped over 17% and will likely below 25% by 20203. As he draws his analysis to a close, he points out how significant an effect age has on viewing. Two years ago viewing of TV by over 65s in the US had increased by 8% whereas that of under 24s had fallen by a half.

An example of the incredible density available using IP to route video.

The second part of Andy’s keynote talk at the 2020 EBU Network Technology Seminar covers The Future of IP Networking. In this, he summarises the future developments in network infrastructure, IP production and remote production. Looking at the datacentre, Andy shows that 2017 was the inflexion point where 100G networking took over 40G in deployed numbers. The next big stop, 400G, has just started to take off but is early and may not make 100G numbers for a while. 800 gig links are forecast to start being available in 2022. This is enabled, asserts Andy, by the exponential growth in speed of the underlying chips within switches.

Andy shows us an example of a 1U switch which has a throughput of over 1024 UHD streams. If we compare this with a top-end SDI router solution, we see that a system that can switch 1125×1125 3G HD signals takes two 26RU racks. Taking 4 signals per UHD signal, the 1U switch has 3.6 times the throughput than a 52U SDI system. He then gives a short primer on 400G standards such as 400G for fibre, copper etc. along with the distance they will reach.

Now looking towards The New IP Television Studio Andy lays out how many SDI streams you can get into 100G and 400G links. For standard 3G HD, 128 will fit into 400G. Andy discusses the reduction in size of routers and of cabling before talking about examples such as CBC. Finally, he points out that with fibre, round trip times for 1000km can be as low as 10ms meaning that, any European event can be covered by remote production using uncompressed video such as the FIS World Ski Championships. We’ve seen, here on The Broadcast Knowledge that even if you can’t use uncompressed video, using JPEG XS is a great, low-latency way of linking 2110 workflows and achieving remote production.

Watch now!
Speakers

Andy Bechtolsheim Andy Bechtolsheim
Founder,
ARISTA Networks

Video: How to build two large Full-IP OB trucks (during COVID-19)

It’s never been easy building a large OB van. Keeping within axel weight, getting enough technology in and working within a tight project timeline, not to mention keeping the expanding sections cool and water-tight is no easy task. Add on that social distancing thanks to SARS-CoV-2 and life gets particularly tricky.

This project was intriguing before Covid-19 because it called for two identical SMPTE ST-2110 IP trucks to be built, explains Geert Thoelen from NEP Belgium. Both are 16-camera trucks with 3 EVS each. The idea being that people could walk into truck A on Saturday and do a show then walk into truck B on Sunday and work in exactly the same show but on a different match. Being identical, when these trucks will be delivered to Belgium public broadcaster RTBF, production crews won’t need to worry about getting a better or worse truck then the other programmes.. The added benefit is that weight is reduced compared to SDI baseband. The trucks come loaded with Sony Cameras, Arista Switches, Lawo audio, EVS replays and Riedel intercoms. It’s ready to take a software upgrade for UHD and offers 32 frame-synched and colour-corrected inputs plus 32 outputs.

Broadcast Solutions have worked with NEP Belgium for many years, an ironically close relationship which became a key asset in this project which had to be completed under social distancing rules. Working open book and having an existing trust between the parties, we hear, was important in completing this project on time. Broadcast Solutions separated internet access for the truck to access the truck as it was being built with 24/7 remote access for vendors.

Axel Kühlem fro broadcast solutions address a question from the audience of the benefits of 2110. He confirms that weight is reduced compared to SDI by about half, comparing like for like equipment. Furthermore, he says the power is reduced. The aim of having two identical trucks is to allow them to be occasionally joined for large events or even connected into RTBF’s studio infrastructure for those times when you just don’t have enough facilities. Geert points out that IP on its own is still more expensive than baseband, but you are paying for the ability to scale in the future. Once you count the flexibility it affords both the productions and the broadcaster, it may well turn out cheaper over its lifetime.

Watch now!
Speakers

Axel Kühlem Axel Kühlem
Senior System Architect
Broadcast Solutions
Geert Thoelen Geert Thoelen
Technical Director,
NEP Belgium

Video: AV1 – A Reality Check

Released in 2018, AV1 had been a little over two years in the making at the Alliance of Open Media founded by industry giants including Google, Amazon, Mozilla, Netflix. Since then work has continued to optimise the toolset to bring both encoding and decoding down to real-world levels.

This talk brings together AOM members Mozilla, Netflix, Vimeo and Bitmovin to discus where AV1’s up to and to answer questions from the audience. After some introductions, the conversation turns to 8K. The Olympics are the broadcast industry’s main driver for 8K at the moment, though it’s clear that Japan and other territories aim to follow through with further deployments and uses.

“AV1 is the 8K codec of choice” 

Paul MacDougall, Bitmovin
 CES 2020 saw a number of announcements like this from Samsung regarding AV1-enabled 8K TVs. In this talk from Google, Matt Frost from Google Chrome Media explains how YouTube has found that viewer retention is higher with VP9-delivered videos which he attributes to VP9’s improved compression over AVC which leads to quicker start times, less buffering and, often, a higher resolution being delivered to the user. AV1 is seen as providing these same benefits over AVC without the patent problems that come with HEVC.

 
It’s not all about resolution, however, points out Paul MacDougall from BitMovin. Resolution can be useful, for instance in animations. For animated content, resolution is worth having because it accentuates the lines which add intelligibility to the picture. For some content, with many similar textures, grass, for instance, then quality through bitrate may be more useful than adding resolution. Vittorio Giovara from Vimeo agrees, pointing out that viewer experience is a combination of many factors. Though it’s trivial to say that a high-resolution screen of unintended black makes for a bad experience, it is a great reminder of things that matter. Less obviously, Vittorio highlights the three pillars of spatial, temporal and spectral quality. Temporal refers to upping the bitrate, spatial is, indeed, the resolution and spectral refers to bit-depth and colour-depth know as HDR and Wide Colour Gamut (WCG).

Nathan Egge from Mozilla acknowledges that in their 2018 code release at NAB, the unoptimized encoder which was claimed by some to be 3000 times slower than HEVC, was ’embarrassing’, but this is the price of developing in the open. The panel discusses the fact that the idea of developing compression is to try out approaches until you find a combination that work well. While you are doing that, it would be a false economy to be constantly optimising. Moreover, Netflix’s Anush Moorthy points out, it’s a different set of skills and, therefore, a different set of people who optimise the algorithms.

Questions fielded by the panel cover whether there are any attempts to put AV1 encoding or decoding into GPU. Power consumption and whether TVs will have hardware or software AV1 decoding. Current in-production AV1 uses and AVC vs VVC (compression benefit Vs. royalty payments).

Watch now!
Speakers

Vittorio Giovara Vittorio Giovara
Manager, Engineering – Video Technology
Vimeo
Nathan Egge Nathan Egge
Video Codec Engineer,
Mozilla
Paul MacDougall Paul MacDougall
Principal Sales Engineer,
Bitmovin
Anush Moorthy Anush Moorthy
Manager, Video and Image Encoding
Netflix
Tim Siglin Tim Siglin
Founding Executive Director
Help Me Stream, USA