Video: ST 2110 Based OB Production Solution

This case study focuses on NEP UK’s ST 2110 based OB solution (Broadcast Centre and two IP UHD trucks) that was designed to support large sport events. We have already published a few posts related to full IP vans (e.g. Building a Large OB Truck Using SMPTE ST 2110 and ST 2110 – From Theory to Reality), but this design is slightly more innovative.

The most complex part of this solution is Broadcast Centre built for very large premium UHD productions (routing capabilities of 2000×2000 UHD IP feeds, 4 vision mixers). Such large productions take place only a few time a year, so for all the other times the same hardware can be reconfigured into smaller flypacks that can do multiple independent productions at different places around the world. All devices in Broadcast Centre are installed in mobile racks, so you can simply wheel them in and out of different sports venues.

These flypacks can also be used to extend capabilities of IP OB vans – the only limit is the number of ports available on the switches. A truck can be put in any location and connected to multiple IP systems, creating fully scalable and large broadcast system – the kind that you would only previously find in a fixed studio set up.

The case study covers lessons learned from this COTS based system which leverages SMPTE ST 2110, SMPTE 2059, and adaptive FPGA based edge processing. Maurice Snell focuses on advantages of ST 2110 IP design (massive simplification of wiring, use of COTS equipment, audio breakaway possibility, signal agnostic capabilities, flexibility, scalability) and describes the challenges (operators shouldn’t need to know or care if they are routing SDI, IP or a hybrid mixture of the two, importance of unified facility monitoring and configuration and a new approach to fault finding for engineers).

You can download the slides from here.

Watch now!

Speaker

Maurice Snell
Senior System Consultant
Grass Valley

Video: Red and Blue, or Purple; Your IP Media Network, Your Way


Leaf & spine networks have started taking over data centres in the last few years. It’s no secret that people prefer scale-out over scale-up solutions and you can see a similar approach in ST 2110 networks, when large monolithic video switches are replaced with smaller leaf and spine switches.

Leaf and spine refers to networks where a number of main, high throughput switches link to a number of smaller switches. These smaller switches tend to be aggregators and offer the promise of cheaper ports delivered closer to your equipment. The alternative to leaf & spine is monolithic switches which do have their merits, but are certainly not always the right choice.

To provide non-blocking switching in leaf & spine networks you need an SDN controller that orchestrates media flows. Advances in SDN capabilities have led to the emergence of “Purple” network architectures. In this video Gerard Phillips from Arista shows how it differs from a “Red/Blue” architecture, how path diversity is maintained and how ST 2110 IP live production or playout applications could benefit from it.

It’s important to be aware of the different uses of Layer 2 vs Layer 3:

    • Layer 2 devices are typically used for audio networks like Dante and RAVENNA. A layer 2 network is a simple, scalable and affordable choice for audio flows where there are no challenges in terms of bandwidth. However, this type of network doesn’t really work for high bit rate live production video multicast since all multicasts need to be delivered to the IGMP querier which isn’t scalable.

    • Layer 3 have distributed IGMP management since PIM is used on each router to route multicast traffic, so there is no more flooding network with unnecessary traffic. This type of network works well with high bit rate video multicasts, but as IGMP is not bandwidth aware, it’s best to use an SDN system for flow orchestration.

Gerard then looks at resilience:

  • Using 2022-7 seamless switching (plus a robust monitoring system that can provide quick, accurate information to resolve the issue)
  • Choosing quality components (switches, NOS, fibres etc.)
  • Providing redundancy (redundant PSU, fans, fabric modules etc., redundant links between switches, ensuring that routing protocol or SDN can use these “spares”)
  • Dividing up failure domains
  • Using leaf and spine architecture (routing around failed components with SDN)
  • Using resilient IP protocols (BGP, ECMP)

The talk finishes up discussing the pros and cons of the different architectures available:

  • Monolithic systems which are non-blocking, but have a wide failure domain
  • Monolithic – expansion toward spine and leaf with SDN for non-blocking switching
  • Leaf & spine with air-gapped Red and Blue networks
  • Leaf & spine hybrid with Purple switches connected to both Red and Blue spines to support single homed devices
  • Leaf & spine Purple. Here, red and blue flows are connected to physically separate switches, but the switches are not identified as red and blue anymore. This is a converged network and an SDN controller is required to provide diverse paths flows to go to two different spines.

You can download the slides from here.

Watch now!

Speaker

Gerard Phillips Gerard Phillips
Systems Engineer
Arista Networks

Video: Network Automation Using Python and Google Sheets

“I’m lazy and I’m a master procrastinator.” If you sympathise, learn how to automate network configuration with some code and spreadsheets.

In this video, the EBU’s Ievgen Kostiukevych presents a simple way to automate basic operations on Arista switches working in a SMPTE ST 2110 environment. This is done with a Python script which retrieves parameters stored in Google Sheets and uses Arista’s eAPI to implement changes to the switch.

The Python script was created as a proof of concept for the EBU’s test lab where frequent changes of VLAN configuration on the switches were required. Google Sheets has been selected as a collaborative tool which allows multiple people to modify settings and keep track of changes at the same time. This approach makes repetitive tasks like adding or changing descriptions of the ports easier as well.

Functionality currently supported:

  • Creating VLANs and modyfying their descriptions based on the date in a Google Sheets
  • Changing access VLANs and interface descriptions for the ports based on the date in a Google Sheets
  • Reading interfaces status and the mac address table from the switch and writing the data to the spreadsheet

The script can be downloaded from GitHub.

Speaker

Ievgen Kostiukevych
Senior IP Media Technology Architect and Trainer
EBU

Video: ST 2110 – From Theory to Reality

Delivering an all-IP truck is no mean feat. tpc explains what they learnt, what went well and how they succeeded in delivering a truck which takes no longer to fire up than a traditional SDI truck.

A common question among people considering a move to IP is ‘do I need to?’ and ‘how can I get ready?’. Here at The Broadcast Knowledge we always say ‘find a small project, get it working, learn what goes wrong and then plan the one you really wanted to do.’ The Swiss broadcasting service provider ‘Technology and Production Centre’, known as ‘tpc’, has done just that.

tpc is currently working on the Metechno project – a large, all-IP news, sports and technology centre for Swiss radio and television. In order to acquire necessary experience with the SMPTE ST 2110 standard, tpc designed the UHD1 OB van ahead of time which has been used in TV production for 6 months now. In this video, Andreas Lattmann shares the vision of the Metechno Project and, critically, his experiences related to the design and use of the truck.

The UHD1 is a 24-camera OB van with all IP core based on Arista switches with non-blocking architecture. It is the equivalent of an 184-square UHD SDI system however, it can be expanded by adding additional line cards to network switches. The truck is format agnostic, supporting both HD and UHD formats in HDR and SDR. IP gateways are incorporated for SDI equipment.

The SMPTE ST 2110 specification separates video and audio into discrete essence streams which boosts efficiency and flexibility, but we hear in this talk that more attention to latency (lip-sync) is required compared to SDI systems. Andreas talks about the flexibility this truck provides with up-/down-conversion, colour-correction for any video plus how IP has enabled full flexibility in what can be routed to the multiviewer screens.

Andreas spends some time discussing redundancy and how IP enables full redundancy – an improvement over many SDI infrastructures and how SMPTE’s ST 2022-7 standard makes this possible.

The main GUI is based on a Lawo VSM control system which aims to deliver a familiar experience for operators who used to work in the SDI domain. Network training has been provided for all operators because troubleshooting has changed significantly with the introduction of essences over IP. This is not least because NMOS IS-04 and 05 standards were not mature enough during the design of the truck, so all IP connections had to be managed manually. With more than 50 thousand IP addresses in this system, AMWA’s NMOS IS-04 which manages discovery and registration and IS-05 which manages the setup and take-down of connections would have helped significantly in the lean management of the truck.

Lattmann emphasizes the importance of using open standards like SMPTE ST 2110 instead of proprietary solutions. That allows you to choose the best components and not rely on a single manufacturer.

The learning’s the Andreas presents us involve difficulties with PTP, IP training, the benefits of flexibility. From a video point of view, Andreas presents his experiences with HDR->SDR workflows, focussing in HDR and UHD.

Watch now!

Speaker

Andreas Lattmann Andreas Lattmann
CTO, Head of Planning & Projects
tpc Switzerland AG