Video: Red and Blue, or Purple; Your IP Media Network, Your Way


Leaf & spine networks have started taking over data centres in the last few years. It’s no secret that people prefer scale-out over scale-up solutions and you can see a similar approach in ST 2110 networks, when large monolithic video switches are replaced with smaller leaf and spine switches.

Leaf and spine refers to networks where a number of main, high throughput switches link to a number of smaller switches. These smaller switches tend to be aggregators and offer the promise of cheaper ports delivered closer to your equipment. The alternative to leaf & spine is monolithic switches which do have their merits, but are certainly not always the right choice.

To provide non-blocking switching in leaf & spine networks you need an SDN controller that orchestrates media flows. Advances in SDN capabilities have led to the emergence of “Purple” network architectures. In this video Gerard Phillips from Arista shows how it differs from a “Red/Blue” architecture, how path diversity is maintained and how ST 2110 IP live production or playout applications could benefit from it.

It’s important to be aware of the different uses of Layer 2 vs Layer 3:

    • Layer 2 devices are typically used for audio networks like Dante and RAVENNA. A layer 2 network is a simple, scalable and affordable choice for audio flows where there are no challenges in terms of bandwidth. However, this type of network doesn’t really work for high bit rate live production video multicast since all multicasts need to be delivered to the IGMP querier which isn’t scalable.

    • Layer 3 have distributed IGMP management since PIM is used on each router to route multicast traffic, so there is no more flooding network with unnecessary traffic. This type of network works well with high bit rate video multicasts, but as IGMP is not bandwidth aware, it’s best to use an SDN system for flow orchestration.

Gerard then looks at resilience:

  • Using 2022-7 seamless switching (plus a robust monitoring system that can provide quick, accurate information to resolve the issue)
  • Choosing quality components (switches, NOS, fibres etc.)
  • Providing redundancy (redundant PSU, fans, fabric modules etc., redundant links between switches, ensuring that routing protocol or SDN can use these “spares”)
  • Dividing up failure domains
  • Using leaf and spine architecture (routing around failed components with SDN)
  • Using resilient IP protocols (BGP, ECMP)

The talk finishes up discussing the pros and cons of the different architectures available:

  • Monolithic systems which are non-blocking, but have a wide failure domain
  • Monolithic – expansion toward spine and leaf with SDN for non-blocking switching
  • Leaf & spine with air-gapped Red and Blue networks
  • Leaf & spine hybrid with Purple switches connected to both Red and Blue spines to support single homed devices
  • Leaf & spine Purple. Here, red and blue flows are connected to physically separate switches, but the switches are not identified as red and blue anymore. This is a converged network and an SDN controller is required to provide diverse paths flows to go to two different spines.

You can download the slides from here.

Watch now!

Speaker

Gerard Phillips Gerard Phillips
Systems Engineer
Arista Networks

Video: PTP Management and Media Flow Monitoring for All IP Infrastructures

Black and burst was always a ‘set and forget’ system. PTP, which replaces it, deserves active monitoring – and the same is true of your uncompressed media streams as we hear in this talk from the IP Showcase.

In professional essence-over-IP systems such as based on SMPTE ST 2110, timing needs to be rock solid. Thanks to asynchronous nature of IP many different flows can be carried across a network without having to be concerned with synchronization, but this presents a challenge in the production environment. To provide the necessary “genlock”, there is a need for a precise timing standard which is provided by SMPTE ST 2059 which defines the way broadcast signals relate to the IEEE 1588-2008 Precision Time Protocol, commonly referred to as PTPv2. This protocol is very different from analogue Black Burst and Tri-Level signals used in SDI world, so new tools and skills are required for fault finding.

In the first part of this presentation Thomas Gunkel from Skyline Communications focuses on the best practices to configure, monitor and manage PTP in an all-IP infrastructure covering the following:

  • PTP protocol vs reality (packet delay variation, network asymmetry, imperfect timestamping)
  • Increasing reliability of PTP (hardware timestamping, using QoS to prioritise PTP traffic, correcting timing intervals)
  • PTP device issues (grandmaster / boundary clock failure, loss of external reference, badly implemented BMCA)
  • PTP network issues (missing / corrupted event messages, increased packet delay variation, network asymmetry, multicast issues)
  • Automating PTP configuration (BMCA settings, messaging rate intervals, communication mode)
  • Automated PTP provisioning (detecting new PDP our devices using IS-04 or proprietary protocols, extracting end-to-end PTP topology with LLDP, applying standard PTP profiles)
  • PTP monitoring and control (monitor every single metric related to PTP like PTP offset, PTP mean path delay and multicast PTP network traffic for all grandmaster, master and slave devices, prevent slave devices from becoming master)

The second part of this video shows how to track uncompressed media flows in an ST 2110 IP-based media facility using a multi-layer approach and to how to pinpoint any potential issues using Network Monitoring System. Topics covered:

  • All IP flows vs SDI signals
  • Essentials for true orchestration (dynamically orchestrated resources and media services, monitoring / controlling infrastructure and media flows, automatic devices detection and provisioning)
  • Detecting issues (wrong DB entries for multicast essences, broadcast controller and SDN controller DBs out of sync, source not active, IGMP join / leave issues, SSM issues, network oversubscription)
  • Media flow tracking (reading cross point status from SDN controller, comparing this status with actual network topology, detecting “ghost” streams, using sFlow / NetFlow to track individual multicast flows)
  • Importance of true end-to-end SDN orchestration rather than SDN control (routing protocols which provides feedback)
  • All IP routing procedure (resolving multicast flow topology in combination with label management, checking source, checking destination route, presenting data for root cause analysis on each of these steps)

Watch now!

You can download the slides from here.

Speaker

Thomas Gunkel
Market Director Broadcast
Skyline Communications

Video: How IP is Revolutionising Sports Video Production

IP Production is very important for sports streaming including esports where its flexibility is a big plus over SDI infrastructure. This panel discusses NDI, SMPTE ST 2110

eSports, in particular, uses many cameras, Point-of-video cameras, PC outputs and the normal camera positions needed to make a good show, so a technology like NDI really helps keeps costs down – since every SDI port is expensive and takes space – plus it allows computer devices to ‘natively’ send video without specific hardware.

NDI is an IP specification from Newtek (now owned by VizRT) which can be licenced for free and is included in Ross, VizRT, Panasonic, OBS, Epiphan and hundreds more. It allows ultra-low-latency video at 100Mbps or low-latency video at 8Mbps.

The panel discusses the right place and use for NDI compared to SDI. In the right places, networking is more convenient as in stadia. And if you have a short distance to run, SDI can often be the best plan. Similarly, until NDI version 4 which includes timing synchronisation, ST 2110 has been a better bet in terms of synchronised video for ISO recordings.

For many events which combine many cameras with computer outputs, whether it be computers playing youtube, Skype or something else, removing the need to convert to SDI allows the production to be much more flexible.

The panel finishes by discussing audio, and taking questions from the floor covering issues such as embedded alpha, further ST 2110 considerations and UHD workflows.

Watch now!
Speakers

Philip Nelson Philip Nelson
President,
Nelco Media
Mark East Mark East
Chief Problem Solver,
090 Media
Victor Borachuk Victor Borachuk
Director/Executive Producer
JupiterReturn
Jack Lave Jack Lavey
Operations Technician,
FloSports
Jon Raidel Jon Raidel
Technical Operations Manager,
NFL Networks

Video: Current Status of ST 2110 over 25 GbE

IT still has catching up to do. The promise of video over IP and ST 2110 is to benefit from the IT industry’s scale and products, but when it comes to bandwidth, there are times when it isn’t there. This talk looks at 25 gigabit (25GbE) network interfaces to see how well they work and if they’ve arrived on the broadcast market.

Koji Oyama from M3L Inc. explains why the move from 10GbE to 25GbE makes sense; a move which allows more scalability with fewer cables. He then looks at the physical characteristics of the signals, both as 25GbE but also linked together into a 100GbE path.

 

We see that the connectors and adapters are highly similar and then look at a cost analysis. What’s actually available on the market now and what is the price difference? Koji also shows us that FPGAs are available with enough capacity to manage several ports per chip.

So if the cost seems to be achievable, perhaps the decision should come down to reliability. Fortunately, Koji has examined the bit error rates and shows the data which indicates that Reed Solomon protection is needed, called RS-FEC. Reed Solomon is a simple protection scheme which has been used in CDs, satellite transmissions and many other places where a light-weight algorithm for error recovery is needed. Koji goes into some detail here explaining RS-FEC for 25GbE.

Koji has also looked into timing both in synchronisation but also jitter and wander. He presents the results of monitoring these parameters in 10GbE and 25GbE scenarios.

Finishing up by highlighting the physical advantages of moving to 25GbE such as density and streams-per-port, Koji takes a moment to highlight many of the 25GbE products available at NAB as final proof that the 25GbE is increasingly available for use today.

Watch now!

Copy of the presentation

Speaker

Koji Oyama Koji Oyama
Director,
M3L