Video: A video transport protocol for content that matters

What is RIST and why’s it useful? The Reliable Internet Stream Protocol was seeing as strong uptake by broadcasters and other users wanting to use the internet to get their video from A to B over the internet even before the pandemic hit.

Kieran Kunhya from Open Broadcast Systems explains what RIST is trying to do. It comes from a history of expensive links between businesses, with fixed lines or satellite and recognises the increased use of cloud. With cloud computing increasingly forming a key part of many companies’ workflows, media needs to be sent over the internet to get into the workflow. Cloud technology, he explains, allows broadcasters to get away from the traditional on-prem model where systems need to be created to handle peak workload meaning there could be a lot of underutilised equipment.

Whilst the inclination to use the internet seems only too natural given this backdrop, RIST exists to fix the problems that the internet brings with it. It’s not controversial to say that it loses packets and adds jitter to signals. On top of that, using common file transfer technologies like HTTP on TCP leaves you susceptible to drops and variable latency. For broadcasters, it’s also important to know what your latency will be, and know it won’t change. This isn’t something that typical TCP-based technologies offer. On top of solving these problems, RIST also sets out to provide an authenticated, encrypted link.

Ways of doing this have been done before, with Zixi and VideoFlow being two examples that Kieran cites. RIST was created in order to allow interoperability between equipment in a vendor-neutral way. To underline it’s open nature, Kieran shows a table of the IETF RFCs used as part of the protocol.

RIST has two groups of features, those in the ‘Simple Profile’ such as use of RTP, packet loss recovery, bonding and hitless switching. Whereas the ‘Main Profile’ adds on top of that tunnelling (including the ability to choose which direction you set up your connection), encryption, authentication and null packets removal. Both of these are available as published specifications today. A third group of features is being planned under the ‘enhanced profile’ to be released around the beginning of Q2 2021.

Kieran discusses real-world proof points such as a 10-month link which had lost zero packets, though had needed to correct for millions of lost packets. He discusses deployments and moves on to SRT. SRT, Secure Reliable Transport, is a very popular technology which achieves a lot of what RIST does. Although it is an open-source project, it is controlled by one vendor, Haivision. It’s easy to use and has seen very wide deployment and it has done much to educate the market so people understand why they need a protocol such as RIST and SRT so has left a thirst in the market. Kieran sees benefit in RIST having brought together a whole range of industry experts, including Haivision, to develop this protocol and that it already has multipath support, unlike SRT. Furthermore, at 15% packet loss, SRT doesn’t work effectively whereas RIST can achieve full effectiveness with 40% packet loss, as long as you have enough bandwidth for a 200% overhead.

Watch now!
Speakers

Kieran Kunhya Kieran Kunhya
Director, RIST Forum
Founder & CEO, Open Broadcast Systems

Video: SRT Protocol Overview

SRT’s ability to make lossy networks seem like perfect video circuits is increasingly well known, testified to by the SRT Alliance having just surpassed 400 member companies. But this isn’t your average ‘overview’, it dispenses with the technology introductions and goes straight into the detail so is ideal for people who already know the basics and want some deeper knowledge plus a look at the new features to come.

For those wanting an introduction, this article What is SRT? is a good starter which also links to two other intro videos. But today we’re going to join Haivision’s Maxim Sharabayko to look below the surface of SRT.

Maxim starts by introducing the open-source Git repository and the open-source integrations available before heading into the feature matrix. This shows what is and isn’t in SRT. We see that on top of ARQ, it has FEC, encryption, stream multiplexing and, soon, connection bonding. Addressing the major feature areas one by one, we start with connectivity.

SRT has two modes to establish a connection which Maixm shows on handshake diagrams. We can see that establishment need only take 2x round trips so is quick to establish. This allows Maxim to show how firewall traversal is accomplished, though NAT traversal is not yet implemented.

Next on the list of topics is access control whereby we need to ensure that only authorised users can gain access. This is achieved using the Stream ID field within SRT control packets which can contain up to 512 characters meaning it can be used to transfer usernames, passwords (in the form of keys) and requests. Maxim then explains the AES PSK encryption function and discusses the potential implementation of TLS and DTLS.

Content delivery is next under the magnifying glass starting with the structure of SRT packets and the difference between the two types: Data and Control, the former being restricted to only containing payload or FEC data. Maxim covers the positive acknowledgement which is contained with SRT with the range of received packets being acknowledged every 10ms and, where 64 packets come in less than 10ms, a low-overhead acknowledgement being sent for each group of 64 data packets. But of course, it’s the NAK packets which are the most important part of the protocol. Maxim explains they are able to send back one sequence number or a range of lost packets and talks about when they are sent. We see how this then fits into the Timestamp Based Packet Delivery (TSBPD) mechanism which itself is a feature of SRT which delivers packets to the receiver with the same timing as they arrived at the sender. The last thing we look at in the section is a worked example of Too-Late Packet Drop which explains when and why packets are dropped.

ARQ isn’t the only recovery mechanism in SRT, it also provides FEC and, soon, channel bonding. FEC’s can be useful but do have downsides which should be understood. There is a permanent bandwidth overhead, even when the circuit is working well, and a further latency is needed in order to generate the necessary recovery packets. Bonding allows you to stream the same stream over more than one circuit and use data from circuit B to fill in any gaps in circuit A, this technique is used in SMPTE ST 2022-7. Connection bonding, though, can also be used with multiple connections at once and having dynamic balancing across them. Maxim sums up the pros and cons of the different techniques in the table below.

Pros and cons of different packet recovery techniques. Source: Haivision

The talk finishes with a look at stream multiplexing, congestion control and ways in which you can use the SRT statistics which are constantly updated to manage your connectivity.

Watch now!
Speakers

Maxim Sharabayko Maxim Sharabayko
Senior Software Developer,
Havision

Video: RIST and Open Broadcast Systems

RIST is a streaming protocol which allows lossy networks such as the internet to be used for critical streaming applications. Called Reliable Internet Stream Transport, it uses ARQ (Automatic Repeat reQuest) retransmission technology to request any data that is lost by the network, creating reliable paths for video contribution.

In this presentation, Kieran Kunhya from Open Broadcast Systems explains why his company has chosen RIST protocol for their software-based encoders and decoders. Their initial solution for news, sports and linear channels contribution over public internet were based on FEC (Forward Error Correction), a technique used for controlling errors in transmission by sending data in a redundant way using error-correcting code. However, FEC couldn’t cope with large burst losses, there was limited interoperability and the implementation was complex. Protecting the stream by sending the same feed over multiple paths and/or sending a delayed version of the stream on the same path, had a heavy bandwidth penalty. This prompted them, instead, to implement an ARQ technique based on RFC 4585 (Extended RTP Profile for Real-time Transport Control Protocol-Based Feedback), which gave them functionality quite similar to the basic RIST functionality.

Key to the discussion, Kieran explains why they decided not to adopt the SRT protocol. As SRT is based file transfer protocol, it’s difficult or impossible to add features like bonding, multi-network and multi-point support which were available in RIST from day one. Moreover, RIST has a large IETF heritage from other industries and is vendor-independent. In Kieran’s opinion, SRT will become a prosumer solution (similar to RTMP, now, for streaming) and RIST will be the professional solution (analogous to MPEG-2 Transport Streams).

Different applications for the RIST protocol are discussed, including 24/7 linear channels for satellite uplink from playout, interactive (two-way) talking heads for news, high bitrate live events and reverse vision lines for monitoring purposes. Also, there is a big potential for using RIST in cloud solutions for live broadcast production workflows. Kieran hopes that more broadcasters will start using spin-up and spin-down cloud workflows, which will help save space and money on infrastructure.

What’s interesting, Open Broadcast Solutions are not currently interested in RIST Main Profile (the main advantages of this profile are support for encryption, authentication and in-band data). Kieran explains that to control devices in remote locations you need some kind of off-the-shelf VPN anyway. These systems provide encryption and NAT port traversal, so the problem is solved at a different layer in the OSI model and this gives customers more control over the type of encryption they want.

Watch now!

Speaker

Kieran Kunhya Kieran Kunhya
Founder and CEO,
Open Broadcast Systems

Video: RIST in the Cloud

Cloud workflows are starting to become an integral part of broadcasters’ live production. However, the quality of video is often not sufficient for high-end broadcast applications where cloud infrastructure providers such as Google, Oracle or AWS are accessed through the public Internet or leased lines.

A number of protocols based on ARQ (Adaptive Repeat reQuest) retransmission technology have been created (including SRT, Zixi, VideoFlow and RIST) to solve the challenge of moving professional media over the Internet which is fraught with dropped packets and unwanted delays. Protocols such as a SRT and RIST enable broadcast-grade video delivery at a much lower cost than fibre or satellite links.

The RIST (Reliable Internet Streaming Transport) protocol has been created as an open alternative to commercial options such as Zixi. This protocol is a merging of technologies from around the industry built upon current standards in IETF RFCs, providing an open, interoperable and technically robust solution for low-latency live video over unmanaged networks.

In this presentation David Griggs from Amazon Web Services (AWS) talks about how the RIST protocol with cloud technology is transforming broadcast content distribution. He explains that delivery of live content is essential for the broadcasters and they look for a way to deliver this content without using expensive private fibre optics or satellite links. With unmanaged networks you can get content from one side of the world to the other with very little investment in time and infrastructure, but it is only possible with protocols based on ARQ like RIST.

Next, David discusses the major advantages of cloud technology, being dynamic and flexible. Historically dimensioning the entire production environment for peak utilisation was financially challenging. Now it is possible to dimension it for average use, while leveraging cloud resources for peak usage, providing a more elastic cost model. Moreover, the cloud is a good place to innovate and to experiment because the barrier to entry in terms of cost is low. It encourages both customers and vendors to experiment and to be innovative and ultimately build more compelling and better solutions.

David believes that open and interoperable QoS protocols like RIST will be instrumental in building complex distribution networks in the cloud. He hopes that AWS by working together with Net Insight, Zixi and Cobalt Digital can start to build innovative and interoperable cloud solutions for live sports.

Watch now!

Speaker

David Griggs
Senior Product Manager, Media Services
AWS Elemental