Per-title encoding with machine learning is the topic of this video from MUX.
Nick Chadwick explains that rather than using the same set of parameters to encode every video, the smart money is to find the best balance of bitrate and resolution for each video. By analysing a large number of combinations of bitrate and resolution, Nick shows you can build what he calls a ‘convex hull’ when graphing against quality. This allows you to find the optimal settings.
Doing this en mass is difficult, and Nick spends some time looking at the different ways of implementing it. In the end, Nick and data scientist Ben Dodson built a system which optimses bitrate for each title using neural nets trained on data sets. This resulted in 84% of videos looking better using this method rather than a static ladder.
Watch now!
Speaker
Nick Chadwick Software Engineer, Mux |