Video: Live Production Forecast: Cloudy for the Foreseeable Future

Our ability to work remotely during the pandemic is thanks to the hard work of many people who have developed the technologies which have made it possible. Even before the pandemic struck, this work was still on-going and gaining momentum to overcome more challenges and more hurdles of working in IP both within the broadcast facility and in the cloud.

SMPTE’s Paul Briscoe moderates the discussion surrounding these on-going efforts to make the cloud a better place for broadcasters in this series of presentation from the SMPTE Toronto section. First in the order is Peter Wharton from TAG V.S. talking about ways to innovate workflows to better suit the cloud.

Peter first outlines the challenges of live cloud production, namely keeping latency low, signal quality high and managing the high bandwidths needed at the same time as keeping a handle on the costs. There is an increasing number of cloud-native solutions but how many are truly innovating? Don’t just move workflows into the cloud, advocates Peter, rather take this opportunity to embrace the cloud.

Working with the cloud will be built on new transport interfaces like RIST and SRT using a modular and open architecture. Scalability is the name of the game for ‘the cloud’ but the real trick is in building your workflows and technology so that you can scale during a live event.

Source: TAG V.S.

There are still obstacles to be overcome. Bandwidth for uncompressed video is one, with typical signals up to 3Gbps uncompressed which then drives very high data transfer costs. The lack of PTP in the cloud makes ST 2110 workflows difficult, similarly the lack of multicast.

Tackling bandwidth, Peter looks at the low-latency ways to compress video such as NDI, NDI|HX, JPEG XS and Amazon’s lossless CDI. Peter talks us through some of the considerations in choosing the right codec for the task in hand.

Finishing his talk, Peter asks if this isn’t time for a radical change. Why not rethink the entire process and embrace latency? Peter gives an example of a colour grading workflow which has been able to switch from on-prem colour grading on very high-spec computers to running this same, incredibly intensive process in the cloud. The company’s able to spin up thousands of CPUs in the cloud and use spot pricing to create temporary, low cost, extremely powerful computers. This has brought waiting times down for jobs to be processed significantly and has reduced the cost of processing an order of magnitude.

Lastly Peter looks further to the future examining how saturating the stadium with cameras could change the way we operate cameras. With 360-degree coverage of the stadium, the position of the camera can be changed virtually by AI allowing camera operators to be remote from the stadium. There is already work to develop this from Canon and Intel. Whilst this may not be able to replace all camera operators, sports is the home of bleeding-edge technology. How long can it resist the technology to create any camera angle?

Source: intoPIX

Jean-Baptiste Lorent is next from intoPIX to explain what JPEG XS is. A new, ultra-low-latency, codec it meets the challenges of the industry’s move to IP, its increasing desire to move data rather than people and the continuing trend of COTS servers and cloud infrastructure to be part of the real-time production chain.

As Peter covered, uncompressed data rates are very high. The Tokyo Olympics will be filmed in 8K which racks up close to 80Gbps for 120fps footage. So with JPEG XS standing for Xtra Small and Xtra Speed, it’s no surprise that this new ISO standard is being leant on to help.

Tested as visually lossless to 7 or more encode generations and with latency only a few lines of video, JPEG XS works well in multi-stage live workflows. Jean-Baptiste explains that it’s low complexity and can work well on FPGAs and on CPUs.

JPEG XS can support up to 16-bit values, any chroma and any colour space. It’s been standardised to be carried in MPEG TSes, in SMPTE ST 2110 as 2110-22, over RTP (pending) within HEIF file containers and more. Worst case bitrates are 200Mbps for 1080i, 390Mbps for 1080p60 and 1.4Gbps for 2160p60.

Evolution of Standards-Based IP Workflows Ground-To-Cloud

Last in the presentations is John Mailhot from Imagine Communications and also co-chair of an activity group at the VSF working on standardising interfaces for passing media place to place. Within the data plane, it would be better to avoid vendors repeatedly writing similar drivers. Between ground and cloud, how do we standardise video arriving and the data you need around that. Similarly standardising new technologies like Amazon’s CDI is important.

John outlines the aim of having an interoperability point within the cloud above the low-level data transfer, closer to 7 than to 1 in the OSI model. This work is being done within AIMS, VSF, SMPTE and other organisations based on existing technologies.

Q&A
The video finishes with a Q&A and includes comments from AWS’s Evan Statton whose talk on CDI that evening is not part of this video. The questions cover comparing NDI with JPEG XS, how CDI uses networking to achieve high bandwidths and high reliability, the balance between minimising network and minimising CPU depending on workflow, the increasingly agile nature of broadcast infrastructure, the need for PTP in the cloud plus the pros and cons of standards versus specifications.

Watch now!
Speakers

Peter Wharton Peter Wharton
Director Corporate Strategy, TAG V.S.
President, Happy Robotz
Vice President of Membership, SMPTE
Jean-Baptiste Lorent Jean-Baptiste Lorent
Director Marketing & Sales,
intoPIX
John Mailhot John Mailhot
Co-Chair Cloud-Gounrd-Cloud-Ground Activity Group, VSF
Directory & NMOS Steering Member, AMWA
Systems Architect for IP Convergence, Imagine Communcations
Paul Briscoe Moderator: Paul Briscoe
Canadian Regional Governor, SMPTE
Consultant, Televisionary Consulting
Evan Statton Evan Statton
Principal Architect, Media & Entertainment
Amazon Web Services

Video:Measuring Video Quality with VMAF – Why You Should Care

VMAF, from Netflix, has become a popular tool for evaluating video quality since its launch as an Open Source project in 2017. Coming out of research from the University of Southern California and The University of Texas at Austin, it’s seen as one of the leading ways to automate video assessment.

Netflix’s Christos Bampis gives us a brief overview of VMAF’s origins and its aims. VMAF came about because other metrics such as MS-SSIM and, in particular, PSNR aren’t close enough indicators of quality. Indeed, Christos shows that when it comes to animated content (i.e. anime and cartoons) subjective scores can be very high, but if we look at the PSNR score it can be the same as the PSNR of score another live-action video clip which humans rate a lot lower, subjectively. Moreover, in less extreme examples, Christos explains. PSNR is often 5% or so away from the actual subjective score in either direction.

To a simple approximation, VMAF is a method of bringing out the spatial and temporal information from a video frame in a way which emphasises the types of things humans are attuned to such as contrast masking. Christos shows an example of a picture where artefacts in the trees are much harder to see than similar artefacts on a colour gradient such as a sky or still water. These extraction methods take account of situations like this and are then fed into a trained model which matches the results of the model with the numbers that humans would have given it. The idea being that when trained on many examples, it can correctly predict a human’s score given a set of data extracted from a picture. Christos shows examples of how well VMAF out-performs PSNR in gauging video quality.

 

Challenges are in focus in the second half of the talk. What are the things which still need working on to improve VMAF? Christos zooms in on two: design dimensionality and noise. By design dimensionality, he means how can VMAF be extended to be more general, delivering a number which has a consistent meaning in different scenarios? As the VMAF model has been trained on AVC, how can we deal with different artefacts which are seen with different codecs? Do we need a new model for HDR content instead of SDR and how should viewing conditions, whether ambient light or resolution and size of the display device, be brought into the metric? The second challenge Christos highlights is noise as he reveals VMAF tends to give lower scores than it should to noisy sources. Codecs like AV1 have film-grain synthesis tools and these need to be evaluated, so behaving correctly in the presence of video noise is important.

The talk finishes with Christos outlining that VMAF’s applicability to the industry is only increasing with new codecs coming out such as LCEVC, VCC, AV1 and more – such diversity in the codec ecosystem wasn’t an obvious prediction in 2014 when the initial research work was started. Christos underlines the fact that VMAF is a continually evolving metric which is Open Source and open to contributions. The Q&A covers failure cases, super-resolution and how to interpret close-call results which are only 1% different.

Watch now!
Download the presentation
Speaker

Christos Bampis Christos Bampis
Senior Software Engineer,
Netflix

Video: Case Study: Dropbox HQ ST 2110

Dropbox is embedded in many production workflows – official and otherwise – so it’s a beautiful symmetry that they’re using Broadcast’s latest technology, SMPTE ST 2110, within their own headquarters. Dropbox have AV throughout their building and a desire to create professional video from anywhere. This desire was a driving factor in an IP-based production facility as, to allow mobile production platforms to move from room to room with only a single cable needed to connect to the wall and into the production infrastructure.

David Carroll’s integration company delivered this project and joins Wes Simpson to discuss this case-study with colleague Kevin Gross. David explains that they delivered fibre to seventy locations throughout the building making most places into potential production locations.

Being an IT company at heart, the ST 2110 network was built to perform in the traditional way, but with connections into the corporate network which many broadcasters wouldn’t allow. ST 2110 works best with two separate networks, often called Red and Blue, both delivering the same video. This uses ST 2022-7 to seamlessly failover if one network loses a packet or even if it stops working all together. This is the technique used with dropbox, although there these networks are connected together so are not one hundred per cent isolated. This link, however, has the benefit of allowing PTP traffic between the two networks.

PTP topology typically sees two grandmasters in the facility. It makes sense to connect one to the red network, the other to the blue. In order to have proper redundancy, though, there should really be a path from both grandmasters to both networks. This is usually done with a specially-configured ‘PTP only’ link between the two. In this case, there are other reasons for a wider link between networks which also serves as the PTP link. Another element of PTP topology is acknowledging the need for two PTP domains. A PTP domain allows two PTP systems to operate on the same network but without interfering with one another. Dante requires PTP version 1 whereas 2110, and most other things, require v2. Although this is in the process of improving, the typical way to solve this now is to run the two separately and block v1 from areas of the network in which it’s not needed.

PTP disruptions can also happen with multicast packet loss. If packets are lost at the wrong time, a grandmaster election can happen. Finally, on PTP, they also saw the benefits of using boundary clock switches to isolate the grandmasters. These grandmasters have to send out the time eight times a second. Each end-device then replies to ascertain the propagation delay. Dealing with every single device can overwhelm grandmasters, so boundary clock switches can be very helpful. On a four-core Arista, David and Kevin found that one core would be used dealing with the PTP requests.

A more extensive write-up of the project can be found here from David Carroll

Watch now!

Speakers

Kevin Gross Kevin Gross
Media Network Consultant
AVA Networks
David Carroll David Carroll
President,
David Carroll Associates, Inc.
Wes Simpson Wes Simpson
Owner, LearnIPVideo.com

Video: AES67 over WAN

Deeply embedded in the audio industry and adopted into SMPTE ST 2110, AES67 workflows surround us. Increasingly our workflows are in multiple locations so moving AES67 on the WAN and the internet is essential. If networks were always perfect, this would be easy but as that’s not the case, this RAVENNA talk examines what the problems are and how to solve them.

Andreas Hildebrand introduces the video with an examination of how the WAN, whether that’s a company’s managed wide area network or the internet at large, is different from a LAN. Typical issues are packet loss, varying latency meaning the packets arrive with jitter, lack of PTP and multicast. With this in mind, Nicolas Sturmel from Merging Technologies takes the reins to examine the solutions.

Nicolas explains the typically EBU Tech 3326 (also known as ACIP) is used for WAN contribution which specifies how a sender and receiver communicate and the codecs to be used. Although PCM is available, many codecs such as AptX are also prescribed for use. Nicolas says that ACIP is great for most applications but if you need low-latency, precise timing and PCM-quality staying AES67 may be the best policy, even over the WAN.

Having identified your AES6-over-WAN workflow, the question is how to pull it off. Nicolas looks at three methods, one is FEC whereby you are constantly sending redundant data. FEC can send up to around 25% extra data so that if any is lost, the extra information sent can be leveraged to determine the lost values and reconstruct the stream. This is can work well but requires sending this extra data constantly therefore putting up your bandwidth. It can also only deal with certain losses requiring them to be of a short duration.

Instead of FEC, you can use RIST, SRT or a similar re-transmission technology. These will actively recover any lost packets and have the benefit that you only transmit more data when you have lost data. Lastly, he mentions SMPTE ST 2022-7 which uses two paths of identical data to cover losses in any one of them. Although this is 100% extra data, the benefit is that it can deal with any type of loss including a complete path failure which neither of the others can do. It is, however possible to combine FEC or RIST with a 2022-7 workflow so you can have two levels of protection.

Timing over the WAN is not ideal as PTP loses accuracy over long-latency links and it assumes symmetry. On the internet, it’s possible to get links where the latency is longer in one direction than the other. An easy, though potentially costly, workaround for distributing PTP over the WAN is to use GPS, GLONASS or similar to synchronise grandmaster clocks at each location.

Watch now!
Speakers

Nicolas Sturmel Nicolas Sturmel
Product Manager & Senior Technologist
Merging Technologies
Andreas Hildebrand Andreas Hildebrand
RAVENNA Evangelist,
ALCNetworx