Video:Measuring Video Quality with VMAF – Why You Should Care

VMAF, from Netflix, has become a popular tool for evaluating video quality since its launch as an Open Source project in 2017. Coming out of research from the University of Southern California and The University of Texas at Austin, it’s seen as one of the leading ways to automate video assessment.

Netflix’s Christos Bampis gives us a brief overview of VMAF’s origins and its aims. VMAF came about because other metrics such as MS-SSIM and, in particular, PSNR aren’t close enough indicators of quality. Indeed, Christos shows that when it comes to animated content (i.e. anime and cartoons) subjective scores can be very high, but if we look at the PSNR score it can be the same as the PSNR of score another live-action video clip which humans rate a lot lower, subjectively. Moreover, in less extreme examples, Christos explains. PSNR is often 5% or so away from the actual subjective score in either direction.

To a simple approximation, VMAF is a method of bringing out the spatial and temporal information from a video frame in a way which emphasises the types of things humans are attuned to such as contrast masking. Christos shows an example of a picture where artefacts in the trees are much harder to see than similar artefacts on a colour gradient such as a sky or still water. These extraction methods take account of situations like this and are then fed into a trained model which matches the results of the model with the numbers that humans would have given it. The idea being that when trained on many examples, it can correctly predict a human’s score given a set of data extracted from a picture. Christos shows examples of how well VMAF out-performs PSNR in gauging video quality.

 

Challenges are in focus in the second half of the talk. What are the things which still need working on to improve VMAF? Christos zooms in on two: design dimensionality and noise. By design dimensionality, he means how can VMAF be extended to be more general, delivering a number which has a consistent meaning in different scenarios? As the VMAF model has been trained on AVC, how can we deal with different artefacts which are seen with different codecs? Do we need a new model for HDR content instead of SDR and how should viewing conditions, whether ambient light or resolution and size of the display device, be brought into the metric? The second challenge Christos highlights is noise as he reveals VMAF tends to give lower scores than it should to noisy sources. Codecs like AV1 have film-grain synthesis tools and these need to be evaluated, so behaving correctly in the presence of video noise is important.

The talk finishes with Christos outlining that VMAF’s applicability to the industry is only increasing with new codecs coming out such as LCEVC, VCC, AV1 and more – such diversity in the codec ecosystem wasn’t an obvious prediction in 2014 when the initial research work was started. Christos underlines the fact that VMAF is a continually evolving metric which is Open Source and open to contributions. The Q&A covers failure cases, super-resolution and how to interpret close-call results which are only 1% different.

Watch now!
Download the presentation
Speaker

Christos Bampis Christos Bampis
Senior Software Engineer,
Netflix

Video: AV1 – A Reality Check

Released in 2018, AV1 had been a little over two years in the making at the Alliance of Open Media founded by industry giants including Google, Amazon, Mozilla, Netflix. Since then work has continued to optimise the toolset to bring both encoding and decoding down to real-world levels.

This talk brings together AOM members Mozilla, Netflix, Vimeo and Bitmovin to discus where AV1’s up to and to answer questions from the audience. After some introductions, the conversation turns to 8K. The Olympics are the broadcast industry’s main driver for 8K at the moment, though it’s clear that Japan and other territories aim to follow through with further deployments and uses.

“AV1 is the 8K codec of choice” 

Paul MacDougall, Bitmovin
 CES 2020 saw a number of announcements like this from Samsung regarding AV1-enabled 8K TVs. In this talk from Google, Matt Frost from Google Chrome Media explains how YouTube has found that viewer retention is higher with VP9-delivered videos which he attributes to VP9’s improved compression over AVC which leads to quicker start times, less buffering and, often, a higher resolution being delivered to the user. AV1 is seen as providing these same benefits over AVC without the patent problems that come with HEVC.

 
It’s not all about resolution, however, points out Paul MacDougall from BitMovin. Resolution can be useful, for instance in animations. For animated content, resolution is worth having because it accentuates the lines which add intelligibility to the picture. For some content, with many similar textures, grass, for instance, then quality through bitrate may be more useful than adding resolution. Vittorio Giovara from Vimeo agrees, pointing out that viewer experience is a combination of many factors. Though it’s trivial to say that a high-resolution screen of unintended black makes for a bad experience, it is a great reminder of things that matter. Less obviously, Vittorio highlights the three pillars of spatial, temporal and spectral quality. Temporal refers to upping the bitrate, spatial is, indeed, the resolution and spectral refers to bit-depth and colour-depth know as HDR and Wide Colour Gamut (WCG).

Nathan Egge from Mozilla acknowledges that in their 2018 code release at NAB, the unoptimized encoder which was claimed by some to be 3000 times slower than HEVC, was ’embarrassing’, but this is the price of developing in the open. The panel discusses the fact that the idea of developing compression is to try out approaches until you find a combination that work well. While you are doing that, it would be a false economy to be constantly optimising. Moreover, Netflix’s Anush Moorthy points out, it’s a different set of skills and, therefore, a different set of people who optimise the algorithms.

Questions fielded by the panel cover whether there are any attempts to put AV1 encoding or decoding into GPU. Power consumption and whether TVs will have hardware or software AV1 decoding. Current in-production AV1 uses and AVC vs VVC (compression benefit Vs. royalty payments).

Watch now!
Speakers

Vittorio Giovara Vittorio Giovara
Manager, Engineering – Video Technology
Vimeo
Nathan Egge Nathan Egge
Video Codec Engineer,
Mozilla
Paul MacDougall Paul MacDougall
Principal Sales Engineer,
Bitmovin
Anush Moorthy Anush Moorthy
Manager, Video and Image Encoding
Netflix
Tim Siglin Tim Siglin
Founding Executive Director
Help Me Stream, USA

Video: Into the Depths: The Technical Details behind AV1

As we wait for the dust to settle on this NAB’s AV1 announcements hearing who’s added support for AV1 and what innovations have come because of it, we know that the feature set is frozen and that some companies will be using it. So here’s a chance to go in to some of the detail.

AV1 is being created by the AOM, the Alliance for Open Media, of which Mozilla is a founding member. The IETF is considering it for standardisation under their NetVC working group and implementations have started. On The Broadcast Knowledge, we have seen explanations from Xiph.org, one of the original contributors to AV1. We’ve seen how it fares against HEVC with Ian Trow and how HDR can be incorporated in it from Google and Warwick University. For a complete list of all AV1 content, have a look here.

Now, we join Nathan Egge who talks us through many of the different tools within AV1 including one which often captures the imagination of people; AV1’s ability to remove film grain ahead of encoding and then add back in synthesised grain on playback. Nathan also looks ahead in the Q&A talking about integration into RTP, WebRTC and why Broadcasters would want to use AV1.

Watch now!

Speaker

Nathan Egge Nathan Egge
Video Codec Engineer,
Mozilla

Video: The state of advanced codecs; separating hype from reality

There are a lot of codecs both new and old that are in use or vying to be the next big thing. Tom Vaughan helps us see what they really can achieve and where each one is useful.

Recorded at San Francisco Video Tech Meetup in September, this video starts with a look at a the ‘hype cycle’. Tom places each codec, from MPEG 2 to VVC on the curve before looking at what the barriers to adoption are.

Tom then looks at HEVC discussing which devices can receive it, which can create it, the streaming services which support it and where adoption is likely to be. Finally, HEVC discussion is complete without a look at the HEVC patent landscape Venn diagram.

The focus then shifts to the Alliance for Open Media and their AV1 codec, its patent status and technical progress to date. He then discusses the performance of AV1, HEVC and Beamr against each other.

Almost brand new out of the starting blocks is VVC from MPEG and the Media Coding Industry Forum (MC-IF). Tom explains the aims of the forum and the VVC codec they are creating before taking questions from the floor.

Watch now!

Speaker

Tom Vaughan Tom Vaughan
VP Strategy,
Beamr