Video: Pervasive video deep-links

Google have launched a new initiative allowing publishers to highlight key moments in a video so that search results can jump straight to that moment. Whether you have a video that looks at 3 topics, one which poses questions and provides answers or one which has a big reveal and reaction shots, this could help increase engagement.

The plan is the content creators tell Google about these moments so Paul Smith from theMoment.tv takes to the stage at San Francisco Video Tech to explain how. After looking at a live demo, Paul takes a dive into the webpage code that makes it happen. Hidden in the tag, he shows the script which has its type set to application/ld+json. This holds the metadata for the video as a whole such as the thumbnail URL and the content URL. However it also then defines the highlighted ‘parts’ of the video with URLs for those.

Whiles the programme is currently limited to a small set of content publishers, everyone can benefit from these insights on google video search. It will also look at YouTube descriptions in which some people give links to specific times such as different tracks in a music mix, and bring those into the search results.

Paul looks at what this means for website and player writers. On suggestion is the need to scroll the page to the correct video and make the different videos on a page clearly signposted. Paul also looks towards the future at what could be done to better integrate with this feature. For example updating the player UI to see and create moments or improve the ability to seek to sub-second accuracy. Intriguingly he suggests that it may be advantageous to synchronise segment timings with the beginning of moments for popular video. Certainly food for thought.

Watch now!
Speaker

Paul Smith Paul Smith
Founder,
theMoment.tv

Video: CMAF and DASH-IF Live ingest protocol

Of course, without live ingest of content into the cloud, there is no live streaming so why would we leave such an important piece of the puzzle to an unsupported protocol like RTMP which has no official support for newer codecs. Whilst there are plenty of legacy workflows that still successfully use RTMP, there are clear benefits to be had from a modern ingest format.

Rufael Mekuria from Unified Streaming, introduces us to DASH-IF’s CMAF-based live ingest protocol which promises to solve many of these issues. Based on the ISO BMFF container format which underpins MPEG DASH. Whilst CMAF isn’t intrinsically low-latency, it’s able to got to much lower latencies than standard HLS and LHLS.

This work to create a standard live-ingest protocol was born out of an analysis, Rufael explains, of which part of the content delivery chain were most ripe for standardisation. It was felt that live ingest was an obvious choice partly because of the decaying RTMP protocol which was being sloppy replaced by individual companies doing their own thing, but also because there everyone contributing, in the same way, is of a general benefit to the industry. It’s not typically, at the protocol level, an area where individual vendors differentiate to the detriment of interoperability and we’ve already seen the, then, success of RMTP being used inter-operably between vendor equipment.

MPEG DASH and HLS can be delivered in a pull method as well as pushed, but not the latter is not specified. There are other aspects of how people have ‘rolled their own’ which benefit from standardisation too such as timed metadata like ad triggers. Rufael, explaining that the proposed ingest protocol is a version of CMAF plus HTTP POST where no manifest is defined, shows us the way push and pull streaming would work. As this is a standardisation project, Rufael takes us through the timeline of development and publication of the standard which is now available.

As we live in the modern world, ingest security has been considered and it comes with TLS and authentication with more details covered in the talk. Ad insertion such as SCTE 35 is defined using binary mode and Rufael shows slides to demonstrate. Similarly in terms of ABR, we look at how switching sets work. Switching sets are sets of tracks that contain different representations of the same content that a player can seamlessly switch between.

Watch now!
Speaker

Rufael Mekuria Rufael Mekuria
Head of Research & Standardisation,
Unified Streaming

Video: Video Caching Best Practices

Caching is a critical element of the streaming video delivery infrastructure. By storing objects as close to the viewer as possible, you can reduce round-trip times, cut bandwidth costs, and create a more efficient delivery chain.

This video brings together Disney, Qwilt and Verizon to understand their best-practices and look at the new Open Caching Network (OCN) working group from the Streaming Video Alliance. This recorded webinar is a discussion on the different aspects of caching and the way the the OCN addresses this.

The talk starts simply by answering “What is a caching server and how does it work?” which helps everyone get on to the same page whilst listening to the answers to “What are some of the data points to collect from the cache?” hearing ‘cache:hit-ratio’, ‘latency’, ‘cache misses’, ‘data coming from the CDN vs the origin server’ as some of the answers.

This video continues by exploring how caching nodes are built, optimising different caching solutions, connecting a cache to the Open Caching Network, and how bettering cache performance and interoperability can improve your overall viewer experience.

The Live Streaming Working Group is mentioned covered as they are working out the parameters such as ‘needed memory’ for live streaming servers and moves quickly into discussing some tricks-of-the-trade, which often lead to a better cache.

There are lots of best practices which can be shared and the an open caching network one great way to do this. The aim is to create some interoperability between companies, allowing small-scale start-up CDNs to talk to larger CDNs. A way for a streaming company to understand that it can interact with ‘any’ CDN. As ever, the idea comes down to ‘interoperability’. Have a listen and judge for yourself!

Watch now!
Speakers

Eric Klein Eric Klein
Director, Content Distribution – Disney+/ESPN+, Disney Streaming Services
Co-Chair, Open Cache Working Group, Streaming Video Alliance
Yoav Gressel Yoav Gressel
Vice President of R&D,
Qwilt
Sanjay Mishra Sanjay Mishra
Director, Technology
Verizon
Jason Thibeault Jason Thibeault
Executive Director,
Streaming Media Alliance

Video: Integrating CMAF Into A VOD Workflow

CMAF is often seen as the best hope for streaming to match the latency of broadcast. Fully standards based, many see this as the best route over Apple’s LL-HLS. Another benefit of it over LL-HLS is that it’s already a completed standard with growing support.

This talk from Tomas Bacik starts by explaining CMAF to us. Standing for the Common Media Application Format, it’s based on the standardised ISOBMFF container format and whilst CMAF isn’t by default low-latency, it is flexible enough to deliver just that. However, as Tomas from CDN77 points out, there are other major benefits in terms of its use of the Common Encryption format, reduces storage fees and more.

MPEG DASH is a commonly found streaming format based on ISO BMFF. It has always had the benefit of supporting other codecs such as HEVC and AV1 over HLS which is an AVC-only specification. CMAF is an extension of MPEG DASH which goes one step further in that it can deal with both HLS-style manifest files (.hls) as well as MPEG DASH format (.mpd) inheriting, of course, the multi-codec ability of DASH itself.

Next is central theme of the talk, looking at VoD workflows showing how CMAF fits in and, indeed, changes workflows for the better. CMAF directly impacts packaging, storage and CDN which is where we focus now. Given that some devices can play HLS and some can play DASH, if you try to serve both, you will double your requirements of packaging, storage etc. Dynamic packaging allows for immediately repackaging your chunks into either HLS or DASH as needed. Whilst this reduces the storage requirements, it increases processing and also increases the time to first byte. As you might expect, using CMAF throughout, Tomas explains in this talk, allows you to package once and store once which solves these problems.

Tomas continues by explaining the DRM abilities of CMAF including AES-CBC and finishes by taking questions from the audience.

Watch now!
See Streamflow’s blog post supporting the talk
Speakers

Tomas Bacik Tomas Bacik
VP of Product Development, Streamflow by CDN77
CDN77