Video: ST 2110 Based OB Production Solution

This case study focuses on NEP UK’s ST 2110 based OB solution (Broadcast Centre and two IP UHD trucks) that was designed to support large sport events. We have already published a few posts related to full IP vans (e.g. Building a Large OB Truck Using SMPTE ST 2110 and ST 2110 – From Theory to Reality), but this design is slightly more innovative.

The most complex part of this solution is Broadcast Centre built for very large premium UHD productions (routing capabilities of 2000×2000 UHD IP feeds, 4 vision mixers). Such large productions take place only a few time a year, so for all the other times the same hardware can be reconfigured into smaller flypacks that can do multiple independent productions at different places around the world. All devices in Broadcast Centre are installed in mobile racks, so you can simply wheel them in and out of different sports venues.

These flypacks can also be used to extend capabilities of IP OB vans – the only limit is the number of ports available on the switches. A truck can be put in any location and connected to multiple IP systems, creating fully scalable and large broadcast system – the kind that you would only previously find in a fixed studio set up.

The case study covers lessons learned from this COTS based system which leverages SMPTE ST 2110, SMPTE 2059, and adaptive FPGA based edge processing. Maurice Snell focuses on advantages of ST 2110 IP design (massive simplification of wiring, use of COTS equipment, audio breakaway possibility, signal agnostic capabilities, flexibility, scalability) and describes the challenges (operators shouldn’t need to know or care if they are routing SDI, IP or a hybrid mixture of the two, importance of unified facility monitoring and configuration and a new approach to fault finding for engineers).

You can download the slides from here.

Watch now!

Speaker

Maurice Snell
Senior System Consultant
Grass Valley

Video: Red and Blue, or Purple; Your IP Media Network, Your Way


Leaf & spine networks have started taking over data centres in the last few years. It’s no secret that people prefer scale-out over scale-up solutions and you can see a similar approach in ST 2110 networks, when large monolithic video switches are replaced with smaller leaf and spine switches.

Leaf and spine refers to networks where a number of main, high throughput switches link to a number of smaller switches. These smaller switches tend to be aggregators and offer the promise of cheaper ports delivered closer to your equipment. The alternative to leaf & spine is monolithic switches which do have their merits, but are certainly not always the right choice.

To provide non-blocking switching in leaf & spine networks you need an SDN controller that orchestrates media flows. Advances in SDN capabilities have led to the emergence of “Purple” network architectures. In this video Gerard Phillips from Arista shows how it differs from a “Red/Blue” architecture, how path diversity is maintained and how ST 2110 IP live production or playout applications could benefit from it.

It’s important to be aware of the different uses of Layer 2 vs Layer 3:

    • Layer 2 devices are typically used for audio networks like Dante and RAVENNA. A layer 2 network is a simple, scalable and affordable choice for audio flows where there are no challenges in terms of bandwidth. However, this type of network doesn’t really work for high bit rate live production video multicast since all multicasts need to be delivered to the IGMP querier which isn’t scalable.

    • Layer 3 have distributed IGMP management since PIM is used on each router to route multicast traffic, so there is no more flooding network with unnecessary traffic. This type of network works well with high bit rate video multicasts, but as IGMP is not bandwidth aware, it’s best to use an SDN system for flow orchestration.

Gerard then looks at resilience:

  • Using 2022-7 seamless switching (plus a robust monitoring system that can provide quick, accurate information to resolve the issue)
  • Choosing quality components (switches, NOS, fibres etc.)
  • Providing redundancy (redundant PSU, fans, fabric modules etc., redundant links between switches, ensuring that routing protocol or SDN can use these “spares”)
  • Dividing up failure domains
  • Using leaf and spine architecture (routing around failed components with SDN)
  • Using resilient IP protocols (BGP, ECMP)

The talk finishes up discussing the pros and cons of the different architectures available:

  • Monolithic systems which are non-blocking, but have a wide failure domain
  • Monolithic – expansion toward spine and leaf with SDN for non-blocking switching
  • Leaf & spine with air-gapped Red and Blue networks
  • Leaf & spine hybrid with Purple switches connected to both Red and Blue spines to support single homed devices
  • Leaf & spine Purple. Here, red and blue flows are connected to physically separate switches, but the switches are not identified as red and blue anymore. This is a converged network and an SDN controller is required to provide diverse paths flows to go to two different spines.

You can download the slides from here.

Watch now!

Speaker

Gerard Phillips Gerard Phillips
Systems Engineer
Arista Networks

Video: PTP Management and Media Flow Monitoring for All IP Infrastructures

Black and burst was always a ‘set and forget’ system. PTP, which replaces it, deserves active monitoring – and the same is true of your uncompressed media streams as we hear in this talk from the IP Showcase.

In professional essence-over-IP systems such as based on SMPTE ST 2110, timing needs to be rock solid. Thanks to asynchronous nature of IP many different flows can be carried across a network without having to be concerned with synchronization, but this presents a challenge in the production environment. To provide the necessary “genlock”, there is a need for a precise timing standard which is provided by SMPTE ST 2059 which defines the way broadcast signals relate to the IEEE 1588-2008 Precision Time Protocol, commonly referred to as PTPv2. This protocol is very different from analogue Black Burst and Tri-Level signals used in SDI world, so new tools and skills are required for fault finding.

In the first part of this presentation Thomas Gunkel from Skyline Communications focuses on the best practices to configure, monitor and manage PTP in an all-IP infrastructure covering the following:

  • PTP protocol vs reality (packet delay variation, network asymmetry, imperfect timestamping)
  • Increasing reliability of PTP (hardware timestamping, using QoS to prioritise PTP traffic, correcting timing intervals)
  • PTP device issues (grandmaster / boundary clock failure, loss of external reference, badly implemented BMCA)
  • PTP network issues (missing / corrupted event messages, increased packet delay variation, network asymmetry, multicast issues)
  • Automating PTP configuration (BMCA settings, messaging rate intervals, communication mode)
  • Automated PTP provisioning (detecting new PDP our devices using IS-04 or proprietary protocols, extracting end-to-end PTP topology with LLDP, applying standard PTP profiles)
  • PTP monitoring and control (monitor every single metric related to PTP like PTP offset, PTP mean path delay and multicast PTP network traffic for all grandmaster, master and slave devices, prevent slave devices from becoming master)

The second part of this video shows how to track uncompressed media flows in an ST 2110 IP-based media facility using a multi-layer approach and to how to pinpoint any potential issues using Network Monitoring System. Topics covered:

  • All IP flows vs SDI signals
  • Essentials for true orchestration (dynamically orchestrated resources and media services, monitoring / controlling infrastructure and media flows, automatic devices detection and provisioning)
  • Detecting issues (wrong DB entries for multicast essences, broadcast controller and SDN controller DBs out of sync, source not active, IGMP join / leave issues, SSM issues, network oversubscription)
  • Media flow tracking (reading cross point status from SDN controller, comparing this status with actual network topology, detecting “ghost” streams, using sFlow / NetFlow to track individual multicast flows)
  • Importance of true end-to-end SDN orchestration rather than SDN control (routing protocols which provides feedback)
  • All IP routing procedure (resolving multicast flow topology in combination with label management, checking source, checking destination route, presenting data for root cause analysis on each of these steps)

Watch now!

You can download the slides from here.

Speaker

Thomas Gunkel
Market Director Broadcast
Skyline Communications

Video: Implementing AES67 and ST 2110-30 in Your Plant

AES67 is a flexible standard but with this there is complexity and nuance. Implementing it within ST 2110-30 takes some care and this talk covers lessons learnt in doing exactly that.

AES67 is a standard defined by the Audio Engineering Society to enable high-performance audio-over-IP streaming interoperability between various AoIP systems like Dante, WheatNet-IP and Livewire. It provides comprehensive interoperability recommendations in the areas of synchronization, media clock identification, network transport, encoding and streaming, session description, and connection management.

The SMPTE ST 2110 standards suite makes it possible to separately route and break away the essence streams – audio, video, and ancillary data. ST 2110-30 addresses system requirements and payload formats for uncompressed audio streams and refers to the subset of AES67 standard.

In this video Dominic Giambo from Wheatsone Corporation discusses tips for implementing AES67 and ST 2110-30 standards in a lab environment consisting of over 160 devices (consoles, sufraces, hardware and software I/O blades) and 3 different automation systems. The aim of the test was to pass audio through every single device creating a very long chain to detect any defects.

The following topics are covered:

  • SMPTE ST 2110-30 as a subset of AES67 (support of the PTP profile defined in SMPTE ST 2059-2, an offset value of zero between the media clock and the RTP stream clock, option to force a device to operate in PTP slave-only mode)
  • The importance of using IEEE-1588 PTP v2 master clock for accuracy
  • Packet structure (UDP and RTP header, payload type)
  • Network configuration considerations (mapping out IP and multicast addresses for different vendors, keeping all devices on the same subnet)
  • Discovery and control (SDP stream description files, configuration of signal flow from sources to destinations)

Watch now!

You can download the slides here.

Speaker

Dominic Giambo
Senior Embedded Engineer
Wheatstone Corporation