Video: A 360-degree view on Video Piracy

There will always be piracy, but that’s no reason not to fight against it. And the entertainment industry always has, sometimes effectively, and sometimes farcically (such as the DeCSS debacle at the turn of the century). One of the traditional cat and mouse games, this set of short talks gives a rounded view of the types of protection, types of piracy and methods of detection.

Recorded at the Milan Video Tech meetup, Senior Consultant at VideoDeveloper.io, Andrea Fassina, introduces the first speaker who is Ilker Ürgenc from Akamai with a rounded overview of the threat service for programme producers, broadcasters and streaming providers who starts by looking at piracy rates around the world and its impacts.

When people talk about anti-piracy measures, their mind typically goes straight to DRM. DRM is the most ‘tangible’ aspect of content protection as most people have had to deal with it, or rather the consequences of not being able to watch something both at home and at work. But Ilker’s point is that the protection has to go much further than DRM. It needs to be about protecting against screen recording, against phishing and hacking the production systems or contribution streams. The whole chain needs protections which Ilker details as a protective ecosystem. His solutions, apart from IT best practices are fingerprinting, content watermarking and stream monitoring.

Next up is Matteo Freddi from CHILI who talks about protecting streams whether they be HLS, DASH or other protocols. He starts with outlining the DRMs compatible with the different Microsoft Smoothstreaming, HLS and MPEG DASH in terms of the streaming specifications before bringing us down to earth by looking at what’s actually supported by the different manufacturer devices such as Roku, Apple TV etc. Players are implemented either natively within an OS or through programming interfaces (APIs). APIs allow for a wider ecosystem of players, but they don’t offer some of the tight integrations OSes can provide. Further, Matteo explains how this also affects how easily they can process DRM.

Finally, we have Steve Epstein from Synamedia, who details the techniques which allow providers to protect against misuse of accounts, resharing and restreaming of content. Steve looks at techniques to minimise credential stuffing, watermarking and active monitoring of the streaming service in order to identify misuse of accounts such as multiple simultaneous logins, logins from different parts of the world.

Watch now!
Speakers

Ilker Ürgenc Ilker Ürgenc
Senior Technical Media Solutions Specialist,
Akamai Technologies
Matteo Freddi Matteo Freddi
Head of Technology Operations,
CHILI
Steve Epstein Steve Epstein
Distinguished Engineer – Analytics, Data Science, & Cybersecurity,
Synamedia
Andrea Fassina Moderator:Andrea Fassina
Senior Consultant
videodeveloper.io

Video: Reliable, Live Contribution over the Internet

For so long we’ve been desperate for a cheap and reliable way to contribute programmes into broadcasters, but it’s only in recent years that using the internet for live-to-air streams has been practical for anyone who cares about staying on-air. Add to that an increasing need to contribute live video into, and out of, cloud workflows, it’s easy to see why there’s so much energy going into making the internet a reliable part of the broadcast chain.

This free on-demand webcast co-produced by The Broadcast Knowledge and SMPTE explores the two popular open technologies for contribution over the internet, RIST and SRT. There are many technologies that pre-date those, including Zixi, Dozer and QVidium’s ARQ to name but 3. However, as the talk covers, it’s only in the last couple of years that the proprietary players have come together with other industry members to work on an open and interoperable way of doing this.

Russell Trafford-Jones, from UK video-over-IP specialist Techex, explores this topic starting from why we need anything more than a bit of forward error correction (FEC) moving on to understanding how these technologies apply to networks other than the internet.

This webcast looks at how SRT and RIST work, their differences and similarities. SRT is a well known protocol created and open sourced by Haivision which predates RIST by a number of years. Haivision have done a remarkable job of explaining to the industry the benefits of using the internet for contibution as well as proving that top-tier broadcasters can rely on it.

RIST is more recent on the scene. A group effort from companies including Haivision, Cobalt, Zixi and AWS elemental to name just a few of the main members, with the aim of making a vendor-agnostic, interoperable protocol. Despite, being only 3 years old, Russell explains the 2 specifications they have already delivered which brings them broadly up to feature parity with SRT and are closing in on 100 members.

Delving into the technical detail, Russell looks at how ARQ, the technology fundamental to all these protocols works, how to navigate firewalls, the benefits of GRE tunnels and much more!

The webcast is free to watch with no registration required.

Watch now!
Speakers

Russell Trafford-Jones Russell Trafford-Jones
Manager, Support & Services, Techex
Director of Education, Emerging Technologies, SMPTE
Editor, The Broadcast Knowledge

Video: Esports for Broadcasters – CDNs

With massive, often global, online audiences, esports are highly reliant on great CDN strategies. CDNs exist to copy popular files to servers very close to the users. This takes the burden off the encoders at the heart of the stream. But doing this at scale to millions of people is a constant challenge.

Paul Martin from CDN provider Vecima, helps explain the challenges and solutions for esports producers and streaming services alike. Paul outlines the growth in video traffic which paints a positive future for the need for CDNs: 65% streaming growth in 2019, DAZN streamed to over 1 million people 100 times and over the next 5 years, market revenues are forecast to double.

When it comes to scaling, the CDN operates differently to the origination platform. For an esports provider their scale is in programming. The more channels they put out, the more they have to work. A CDN, however, will cache any files that are needed, so it really doesn’t matter whether there are 10 or 1000 assets or channels, the scale goes with the number of people who are accessing the service.

Multiple CDNs: Of course in the real world, providers actually use multiple CDNs to distribute globally. These connections between providers and ISPs are called peering points. There can be a lot of complexity involved with global distribution and some providers are concerned with losing control as their data passes over many third party network infrastructure. This is why many consider moving their own CDN servers into ISPs themselves allowing them more predictable performance and easier capacity expansion.

Paul talks about how this ‘netflix’ model of having your own CDN in ISPs comes into play at high scale and moves on to look at what the important themes are for streaming providers as they move from small startups through to high-scale, high maturity. For each stage, there are clearly definable problems to solve which change with size.

The talk ends with a look to the future and a Q&A talking about what’s monitored in CDNs, WebRTC, 5G and the growth of esports.

Watch now!
Speakers

Paul Martin Paul Martin
VP Marketing, Broadcaster Market Lead,
Vecima

Video: The 2020 EBU Pyramid of User Requirements

There’s a lot more to IP-based production than just getting your video and audio streaming between devices. You need configuration tools, you need timing, there’s the management of the devices to consider and, critically, security. the problem is, working in IP is still new and many of the solutions are yet to mature. This means we still don’t have all the tools we need to realise the full promise of live production IP systems.

Back in 2018, the EBU embarked on a project to focus the industry on the gaps: The Technology Pyramid. This pyramid shows that although we, as an industry, had largely succeeded in defining essence transport over IP, this was only the ‘top of the iceberg’, so to speak, in what needed to be done. also known by its full name, “The Technology Pyramid for Media Nodes 2018”, it shows that everything is underpinned by security, upon that is configuration and monitoring, with discovery and registration built on that.

One important aspect of the pyramid is the green – yellow – red colour coding. When initially released, the only green was the transport layer, but this talk looks at the 2020 edition of the pyramid which shows that the time & sync, as well as discovery and connection, have improved.

We’re joined by Willem Vermost and Félix Poulin to discuss the problems the industry has faced to date and the progress made in making the pyramid green. Both previously with the EBU and now both with early-adopter broadcasters who are going live with IP systems, they are perfectly placed to explain the evolution on of the market.

Not only has the colouring of the pyramid changed, but the detail of what each layer constitutes has evolved. The industry has reacted with a number of specifications such as JT-NM TR-1001-1 and AMWA BCP-003. Willem and Félix explain the hidden necessities that have come out of the woodwork as the early adopters have fought to make everything work. PTP is a good example, being able to free-wheel without a PTP clock for 5 minutes and then join back without a glitch has been added to the list of requirements. Time stamping and lip-sync have proven tricky, too. Intermediate processing steps place their timestamps over the original timestamp of when the media was captured. If you are trying to sync audio and video which have gone through processing, you need the original timestamps which have now been lost. This problem is being addressed but until it is, it’s a big gap.

Overall we can see the power of focussing people’s attention in this way. Whilst there is much more detail in the talk itself, just from the extracts in this article, it’s clear progress has been made and with plenty more broadcasters starting their IP projects, there is all the more motivation for the vendors to implement the requirements as laid out than there was before.

Watch now!
Speakers

Willem Vermost Willem Vermost
Design & Engineering Manager,
VRT
Félix Poulin Félix Poulin
Direcor – Media Transport Architecture & Lab
CBC/Radio-Canada