Video: IP for Broadcast, Virtual Immersive Studios, Esports

A wide range of topics today covering live virtual production, lenses, the reasons to move to IP, Esports careers and more. This is a recording of the SMPTE Toronto sections’ February meeting with guest speakers from Arista, Arri, TFO and Ross Video.

The first talk of the evening was from Ryan Morris of Arista talking about the importance of the move to IP. Those with an IP infrastructure have noticed that it’s easier to continue using their system during lockdown when access to the equipment itself is limited. While there will always be a need to move a 100Gbe fibre at some point or other, a running 2110 system easily allows new connections without needing SDI cables plugging up. This is down to IP’s ability to carry multiple signals, in both directions, down a single cable. A 100 gigabit fibre can carry 65 1080i59.94 signals, for instance which is in stark constrast to SDI cabling. Similarly when using an IP router, you can route thousands of flows in a few U of space where as a 1152×1152 SDI router takes up a whole rack.

Ryan moves to an overview of the protocols that make broadcast on IP networks possible starting with unicast, multicast and broadcast. The latter, he likens to a baby screaming. Multicast is like you talking to a group of friends. Multicast is the protocol used for audio, video and other essences when being sent over IP whether as part of SMPTE ST 2110 or ST 2022-6. And whilst it works well, the protocol managing it, IGMP, isn’t really as smart as we need it to be. IGMP knows nothing about the bandwidth of the flow being sent and has no knowledge of capacity or loading of any link. As such, links can get saturated using this method and can even mean that routine maintenance overloads the backup path resulting in an outage. Ryan concludes by saying that SDN resolves this problem. Ryan explains IGMP as analogous to knowing which address you need to drive to and simply setting off in the right direction, reacting to any traffic jams and roadblocks you find. In contrast, he says SDN is like having GPS where everything is taken in to account from the beginning and you know the whole path before you set off. Both will get you there, SDN will be more efficient, predictable and accountable.

To understand more about IP, watch these talks:
“Is IP really better than SDI?” by Ed Calverly detailing on how video over IP works and,
“Network design for live production” by, colleague of Ryan, Gerard Philips
 

 
Next in the line-up is François Gauthier who takes u through the history of cinema-related technologies showing how, at each stage, stanards helped the increasingly global industry work together. SMPTE’s earliest, well known, standardisation efforts were to aid the efforts around World War 1 interchanging films between projectors/cameras. Similarly, ARRI started in 1917 and has benefited from and worked to create SMPTE standards in cameras, lighting, workflows, colour grading and now mixed reality. François eloquently takes us on this journey showing at each stage the motivation for standardisation and how ARRI has developed in step.

A different type of innovation is on show in the next talk. Given by Cliff Lavalée updates on the latest improvements to his immersive studio. It was formerly featured in a previous SMPTE Toronto section talk when he explained the benefits of having a gaming-based 3D engine in this green-screen studio with camera tracking. In fact, it was the first studio of its kind as it came on line in 2016. Since then, game engined have made great inroads into studio production.

Having a completely virtual studio with camera tracking and 3D objects available to be live-rendered in response to the scene, has a number of benefits, Cliff explains. He can track the talent and make objects appear in front or behind them as appropriate in response to their movements. Real-time rendering and the green blank canvas gives design freedom as well as the ability to see what scenes will look like during the shoot rather than after. It’s no surprise that there are also cost savings. In one of a number of videos he shows, we see a children’s programme which takes place in a small village. By using the green screen, the live-action puppets can quickly change sets from place to place integrating real props with virtual backgrounds which move with the camera.

The last talk is from Cameron Reed who’s a former esports director and now works for Ross Video. Cameron gives a brief overview of how esports is split up into developers who make the game, tournament organisers, teams, live production companies and distribution platforms. The Broadcast Knowledge has followed esports for a while. Check out the back catalogue for more detailed videos on the subject.

It’s no surprise that the developers own the game. What’s interesting is that a computer game is much more complex and directly malluable than traditional sports games. Whilst FIFA might control football/soccer world-wide, there is little it can do to change the game. Formula 1 is, perhaps, closest to the esports model where rules will come and go about engines, tyres, refueling strategies etc. With esports, aspects of the game can change week to week in response to fans. Cameron explains esports as ‘free’ adverstising for the developers. Although they won’t always make money, even if they make 90% of their money back directly from the tournament and events for that year, it means they’ve had a 90% discount on their advertising budget. All the while, they’ve managed to inject life in to their game and extend the amount of interest it’s garnered. Camerong gives a brief acknowledgement that for distribution “Twitch is king” but underlines that this platform doesn’t support UHD as of the date of the meeting which doesn’t sit well with the efforts of the gameing industry to increase resolution and detail in games.

Cameron’s presentation finishes with a look at career progressions in esports both following a non/semi-technichal path and a technical path. The market holds a lot of interesting opportunities.

The session ends with a Q&A for all the panelists.

Watch now!
Speakers

Ryan Morris Ryan Morris
Systems Engineer,
Arista Networks
François Gauthier François Gauthier
TSR,
ARRI
Cliff Lavalée Cliff Lavallée
Director of LUV Studio Services,
Groupe Média TFO
Cameron Reed
Esports Business Development Manager,
Ross Video

Video: FOX – Uncompressed live sports in the cloud

Is using uncompressed video in the cloud with just 6 frames of latency to get there and back ready for production? WebRTC manages sub-second streaming in one direction and can even deliver AV1 in real-time. The key to getting down to a 100ms round trip is to move down to millisecond encoding and to use uncompressed video in the cloud. This video shows how it can be done.

Fox has a clear direction to move into the cloud and last year joined AWS to explains how they’ve put their delivery distribution into the cloud remuxing feeds for ATSC transmitters, satellite uplinks, cable headends and encoding for internet delivery, In this video, Fox’s Joel Williams, Evan Statton from AWS explain their work together making this a reality. Joel explains that latency is not a very hot topic for distribution as there are many distribution delays. The focus has been on getting the contribution feeds into playout and MCR monitoring quickly. After all, when people are counting down to an ad break, it needs to roll exactly on zero.

Evan explains the approach AWS has taken to solving this latency problem and starts with considering using SMPTE’s ST 2110 in the cloud. ST 2110 has video flows of at least 1 Gbps, typically and when implemented on-premise is typically built on a dedicated network with very strict timing. Cloud datacentres aren’t like that and Evan demonstrates this showing how across 8 video streams, there are video drops of several seconds which is clearly not acceptable. Amazon, however, has a product called ‘Scalable Reliable Datagram’ which is aimed at moving high bitrate data through their cloud. Using a very small retransmission buffer, it’s able to use multiple paths across the network to deliver uncompressed video in real-time. The retransmission buffer here being very small enables just enough healing to redeliver missing packets within the 16.7ms it takes to deliver a frame of 60fps video.

On top of SRD, AWS have introduced CDI, the Cloud Digital Interface, which is able to describe uncompressed video flows in a way already familiar to software developers. This ‘Audio Video Metadata’ layer handles flows in the same way as 2110, for instance keeping essences separate. Evan says this has helped vendors react favourably to this new technology. For them instead of using UDP, SRD can be used with CDI giving them not only normal video data structures but since SRD is implemented in the Nitro network card, packet processing is hidden from the application itself.

The final piece to the puzzle is keeping the journey into and out of the cloud low-latency. This is done using JPEG XS which has an encoding time of a few milliseconds. Rather than using RIST, for instance, to protect this on the way into the cloud, Fox is testing using ST 2022-7. 2022-7 takes in two identical streams on two network interfaces, typically. This way it should end up with two copies of each packet. Where one gets lost, there is still another available. This gives path redundancy which a single stream will never be able to offer. Overall, the test with Fox’s Arizona-based Technology Center is shown in the video to have only 6 frames of latency for the return trip. Assuming they used a California-based AWS data centre, the ping time may have been as low as two frames. This leaves four frames for 2022-7 buffers, XS encoding and uncompressed processing in the cloud.

Watch now!
Speakers

Joel Williams Joel Wiliams
VP of Architecutre & Engineering,
Fox Corporation
Evan Statton Evan Statton
Principal Architect, Media & Entertainment,
AWS

Video: Esports Production During COVID

Esports continues to push itself into to harness the best of IT and broadcast industries to bring largescale events to half a billion people annually. Natrually, the way this is done has changed with the pandemic, but the 10% annual growth remains on track. The esports market is still maturing and while it does, the industry is working hard on innovating with the best technology to bring the best quality video to viewers and to drive engagement. Within the broadcast industry, vendors are working hard to understand how best to serve this market segment which is very happy to adopt high-quality, low latency solutions and broadcasters are asking whether the content is right for them.

Takling all of these questions is a panel of experts brought together by SMPTE’s Washington DC section including Christopher Keath from Blizzard Entertainment, Mark Alston from EA, Scott Adametz from Riot Games, Richard Goldsmith with Delloite and, speaking in January 2021 while he worked for Twitch, Jonas Bengtson.

First off the bat, Michael introduced the esports market. With 2.9 billion people playing games globally and 10% growth year-on-year, he says that it’s still a relatively immature market and then outlines some notable trends. Firstly there is a push to grow into a mainstream audience. To its benefit, esports has a highly loyal and large fanbase, but growth outside of this demographic is still difficult. In this talk and others, we’ve heard of the different types of accompanying, secondary programmes aimed more at those who are interested enough to have a summary and watch a story being told, but not interested in watching the blow-by-blow 8 hour tournament.

Another trend outlined by Michael is datasharing. There are so many stats available both in terms of the play itself, similar to traditional sports ‘percentage possession’ stats, but also factual data which can trigger graphics such as names, affiliations, locations etc. Secondary data processing, just like traditional sports, is also a big revenue opportunity, so the market, explains Michael, is still working on bigger and better ways to share data for mutual benefit. More information on Deloitte’s opinion of the market is in this article with a different perspective in this global esports market report

You can watch either with this Speaker view or Gallery view

The panel discusses the different angle that esports has taken on publishing with many young producers only knowing the free software ‘OBS‘, underlined by Scott who says esports can still be scrappy in some places, bringing together unsynchronised video sources in a ‘democratised’ production which has both benefits and downsides. Another difference within esports is that many viewers have played the games, often extensively. They therefore know exactly what they look like so watching the game streamed can feel a very different experience after going through, portentially multiple stages of, encoding. The panel all spend a lot of time tuning encoders for different games to maintain the look as best as possible.

Christopher Keath explains what observers are. Effectively these are the in-game camera operators which talk to the head observer who co-ordinates them and has a simple switcher to make some available to the production. This leads to a discsussion on how best to bring the observer’s video, during the pandemic, into the programmes. Riot has kitted out the PCs in observers’ homes to bring them up to spect and allow them to stream out whereas EA has moved the observer PCs into their studio, backed by hefty internet links.

Jonas points out that Twitch brings tens of thousands of streams to the internet constantly and outlines that the Twitch angle on streaming is often different to the ‘esports’ angle of big events, rather they are personality driven. The proliferation of streaming onto Twitch, other similar services and as part of esports itself has driven GPU manufacturers, Jonas continues, to include dedicated streaming functionality on the GPUs to stop encoding detracting from the in-game performance. During the pandemic, Twitch has seen a big increase in social games, where interaction is more key rather than team-based competition games.

You can watch either with the Speaker view or this gallery view

Scott talks about Riot’s network global backbone which saw 3.2 petabytes of data flow – just for production traffic – during the League of Legends Worlds event which saw them produce the event in 19 different languages working between Berlin, LA and Shanghai. For him, the pandemic brought a change in the studio where everything was rendered in realtime in the unreal game engine. This allowed them to use augmented reality and have a much more flexible studio which looked better than the standard ‘VR studios’. He suggests they are likely to keep using this technology.

Agreeing with this by advocating a hybrid approach, Christopher says that the reflexes of the gamers are amazing and so there really isn’t a replacement for having them playing side-by-side on a stage. On top of that, you can then unite the excitement of the crowd with lights, smoke and pyrotechnics so that will still want to stay for some programmes, but cloud production is still a powerful tool. Mark agrees with that and also says that EA are exploring the ways in which this remote working can improve the work-life balance.

The panel concludes by answering questions touching on the relative lack of esports on US linear TV compared to Asia and eslewhere, explaining the franchise/league structures, discussing the vast range of technology-focused jobs in the sector, the unique opportunities for fan engagement, co-streaming and the impact of 5G.

Watch now!
Speakers

Mark Alston Mark Alston
Technical production manager
Electronic Arts (EA)
Christopher Keath Christopher Keath
Broadcast Systems Architect
Blizzard Entertainment
Jonas Bengtson Jonas Bengtson
Senior Engineering Manager, Discord
Formerly, Director at Twitch
Scott Adametz Scott Adametz
Senior Manager, Esports Engineering,
Riot Games
Richard Goldsmith Richard Goldsmith
Manager,
Deloitte Consulting

Video: Cloud Encoding – Overview & Best Practices

There are so many ways to work in the cloud. You can use a monolithic solution which does everything for you which is almost guaranteed by its nature to under-deliver on features in one way or another for any non-trivial workflow. Or you could pick best-of-breed functional elements and plumb them together yourself. With the former, you have a fast time to market and in-built simplicity along with some known limitations. With the latter, you may have exactly what you need, to the standard you wanted but there’s a lot of work to implement and test the system.

Tom Kuppinen from Bitmovin joins Christopher Olekas from SSIMWAVE and host of this Kirchner Waterloo Video Tech talk on cloud encoding. After the initial introduction to ‘middle-aged’ startup, Bitmovin, Tom talks about what ‘agility in the cloud’ means being cloud-agnostic. This is the, yet unmentioned, elephant in the room for broadcasters who are so used to having extreme redundancy. Whether it’s the BBC’s “no closer than 70m” requirement for separation of circuits or the standard deployment methodology for systems using SMPTE’s ST 2110 which will have two totally independent networks, putting everything into one cloud provider really isn’t in the same ballpark. AWS has availability zones, of course, which is one of a number of great ways of reducing the blast radius of problems. But surely there’s no better way of reducing the impact of an AWS problem than having part of your infrastructure in another cloud provider.

Bitmovin have implementations in Azure, Google Cloud and AWS along with other cloud providers. In this author’s opinion, it’s a sign of the maturity of the market that this is being thought about, but few companies are truly using multiple cloud providers in an agnostic way; this will surely change over the next 5 years. For reliable and repeatable deployments, API control is your best bet. For detailed monitoring, you will need to use APIs. For connecting together solutions from different vendors, you’ll need APIs. It’s no surprise that Bitmovin say they program ‘API First’; it’s a really important element to any medium to large deployment.

 

 

When it comes to the encoding itself, per-title encoding helps reduce bitrates and storage. Tom explains how it analyses each video and chooses the best combination parameters for the title. In the Q&A, Tom confirms they are working on implementing per-scene encoding which promises more savings still.

To add to the complexity of a best-of-breed encoding solution, using best-of-breed codecs is part and parcel of the value. Bitmovin were early with AV1 and they support VP9 and HEVC. They can also distribute the encoding so that it’s encoded in parallel by as many cores as needed. This was their initial offering for AV1 encoding which was spread over more than 200 cores.

Tom talks about how the cloud-based codecs can integrate into workflows and reveals that HDR conversion, instance pre-warming, advanced subtitling support and AV1 improvements are on the roadmap while leads on to the Q&A. Questions include whether it’s difficult to deploy on multiple clouds, which HDR standards are likely to become the favourites, what the pain points are about live streaming and how to handle metadata.

Watch now!
Speakers

Tom Kuppinen Tom Kuppinen
Senior Sales Engineer,
Bitmovin
Moderator: Christopher Olekas
Senior Software Engineer,
SSIMWAVE Inc.