Video: Network Design for Live Production

The benefits of IP sound great, but many are held back with real-life concerns: Can we afford it? Can we plug the training gap? and how do we even do it? This video looks at the latter; how do you deploy a network good enough for uncompressed video, audio and metadata? The network needs to deal with a large number of flows, many of which are high bandwidth. If you’re putting it to air, you need reliability and redundancy. You need to distribute PTP timing, control and maintain it.

Gerard Philips from Arista talks to IET Media about the choices you need to make when designing your network. Gerard starts by reminding us of the benefits of moving to IP, the most tangible of which is the switching density possible. SDI routers can use a whole rack to switch over one thousand sources, but with IP Gerard says you can achieve a 4000-square router within just 7U. With increasingly complicated workflows and with the increasing scale of some broadcasters, this density is a major motivating factor in the move. Doubling down on the density message, Gerard then looks at the difference in connectivity available comparing SDI cables which have signal per cable, to 400Gb links which can carry 65 UHD signals per link.

Audio is always ahead of video when it comes to IP transitions so there are many established audio-over-IP protocols, many of which work at Layer 2 over the network stack. Using Layer 2 has great benefits because there is no routing which means that discovering everything on the network is as simple as broadcasting a question and waiting for answers. Discovery is very simple and is one reason for the ‘plug and play’ ease of NDI, being a layer 2 protocol, it can use mDNS or similar to query the network and display sources and destinations available within seconds. Layer 3-based protocols don’t have this luxury as some resources can be on a separate network which won’t receive a discovery request that’s simply broadcast on the local network.

Gerard examines the benefits of layer 2 and explains how IGMP multicast works detailing the need for an IGMP querier to be in one location and receiving all the traffic. This is a limiting factor in scaling a network, particularly with high-bandwidth flows. Layer 3, we hear, is the solution to this scaling problem bringing with it more control of the size of ‘failure domains’ – how much of your network breaks if there’s a problem.

The next section of the video gets down to the meat of network design and explains the 3 main types of architecture: Monolithic, Hub and spoke and leaf and spoke. Gerard takes time to discuss the validity of all these architectures before discussing coloured networks. Two identical networks dubbed ‘Red’ and ‘Blue’ are often used to provide redundancy in SMPTE ST 2110, and similar uncompressed, networks with the idea that the source generates two identical streams and feeds them over these two identical networks. The receiver receives both streams and uses SMPTE ST 2022-7 to seamlessly deal with packet loss. Gerard then introduces ‘purple’ networks, ones where all switch infrastructure is in the same network and the network orchestrator ensures that each of the two essence flows from the source takes a separate route through the infrastructure. This means that for each flow there is a ‘red’ and a ‘blue’ route, but overall each switch is carrying a mixture of ‘red’ and ‘blue’ traffic.

The beauty of using IGMP/PIM for managing traffic over your networks is that the network itself decides how the flows move over the infrastructure. This makes for a low-footprint, simple installation. However, without the ability to take into account individual link capacity, the capacity of the network in general, bitrate of individual flows and understanding the overall topology, there is very control over where your traffic is which makes maintenance and fault-finding hard and, more generally, what’s the right decision for one small part of the network is not necessarily the right decision for the flow or for the network as a whole. Gerard explains how Software-Defined Networking (SDN) address this and give absolute control over the path your flows take.

Lastly, Gerard looks at PTP, the Precision Time Protocol. 2110 relies on having the PTP in the flow, in the essence allowing flows of separate audio and video to have good lip-sync and to avoid phase errors when audio is mixed together (where PTP has been used for some time). We see different architectures which include two grandmaster clocks (GMs), discuss whether boundary clocks (BCs) or transparent clocks (TCs) are the way to go and examine the little security that is available to stop rogue end-points taking charge and becoming grandmaster themselves.

Watch now!
Speaker

Gerard Phillips Gerard Phillips
Systems Engineer,
Arista

Video: Migrating to IP – Top Questions from Broadcasters


Moving to IP can be difficult. For some, it’s about knowing where to even start. For others, it’s a matter of understanding some of the details which is the purpose of this talk from Leader US which looks at the top questions that Leader’s heard from its customer base:

  • How do we look at it?
  • How do we test it?
  • How is the data sent?
  • What is PTP?
  • How do we control it?
  • What is NMOS?
  • What are the standards involved?

These questions, and more, are covered in this webinar.

Steve Holmes from Lader Us details the IP relevant basics starting with the motivations: weight, cost, scale, density, and independent essences. We can then move on to the next questions covering RTP itself and how 2022-6 was built upon it. SMPTE ST 2022-6 splits up a regular SDI signal into sections and encapsulates them, uncompressed. This is one big difference from SMPTE ST 2110 where all essences are sent separately. For some, this is not a benefit, but for general broadcast workflows, it can sometimes be tricky getting them into alignment and some workflows are aimed at delivering an incoming bundle of PIDs so being able to separate them is a backward step.

With this groundwork laid, Steve explains how seamless redundancy works with SMPTE 2022-7 going on to then describe the difficulty of keeping jitter low and the importance of sender profiles in ST 2110. Steve finishes this section with a discussion of NMOS specifications such as IS-05 and IS-06. The session ends with a Q&A.

Watch now!
Speaker

Steve Holmes Steve Holmes
Freelance consultant

Video: Hybrid SDI/ST 2110 Workflows

It’s no secret that SDI is still the way to go for some new installations. For all the valid interest in SMPTE’s ST 2110, the cost savings are only realised either on a large scale or in the case that a system needs continuous flexibility (such as an OB truck) or scalability in the future. Those installations which have gone IP still have some SDI lying around somewhere. Currently, there are few situations where there is an absolute ‘no SDI’ policy because there are few business cases which can afford it.

Looking at the current deployments of broadcast 2110, we have large, often public, broadcasters who are undergoing a tech refresh for a building and can’t justify such as massive investment in SDI or they are aiming to achieve specific savings such as Discovery’s Eurosport Transformation Project which is an inspirational, international project to do remote production for whole buildings. We also have OB trucks who benefit significantly from reduced cabling, higher density routing and flexibility. For a more detailed view on 2110 in trucks, watch this video from NEP. In these scenarios, there is nearly always SDI still involved. Some equipment doesn’t yet work fully in 2110, some doesn’t yet work at all and while there are IP versions of some products, the freelance community still needs to learn how to use the new products or work in the new workflows. If you have a big enough project, you’ll hit the ‘vendor not yet ready’ problem, if you have an OB-truck or similar, you are likely to have to deal with the freelance experience issue. Both are reducing, but are still real and need to be dealt with.

Kevin Salvidge from Leader joins the VSF’s Wes Simpson to share his experience of these SDI/IP mixed workflows, many of which are in OB trucks so also include mixed HDR workflows. He starts by talking about PTP and GPS discussing how timing needs to be synced between locations. He then takes a closer look at the job of the camera shaders who make sure all the cameras have the same colour, exposure etc. Kevin talks about how live production in HDR and SDR work touching on the problem of ‘immediacy’. Shaders need to swap between cameras quickly and are used to the immediate switch that SDI can provide. IP can’t offer quite the same immediacy, Kevin says that some providers have added delays into the SDI switches to match the IP switch times within the same truck. This helps set expectations and stop operators pressing two or more times to get a switch made.

Kevin finishes his talk on the topic of synchronising analogue timing signals with PTP. Kevin shows us the different tools you can use to monitor these signals such as a display of PTP timing against B&B timing, a BMCA data readout of data from the PTP grandmasters to check if the BMCA algorithm is working correctly, PTP delay time, packet inter-arrival time, path delay, traffic shaping monitoring. He then closes with a Q&A talking about the continued prevalence of SDI, what ‘eye patterns’ are in the IP world and increasing HDR roll-outs.

Watch now!
Speaker

Kevin Slavidge
European Regional Development Manager
Leader Europe Ltd.
Wes Simpson Moderator: Wes Simpson
President, Telcom Product Consulting
Owner, LearnIPVideo.com

Video: ST 2110 Testing Fundamentals

When you’ve chosen to go IP in your facility using ST 2110, you’ll need to know how to verify it’s working correctly, how to diagnose problems and have the right tools available. Vendors participate in several interop tests a year, so we can learn from how they set up their tests and the best practices they develop.

In this talk, Jean Lapierre explains what to test for and the types of things that typically go wrong in ST 2110 systems with PTP. Jean starts by talking about the parts of 2110 which are tested and the network and timing infrastructure which forms the basis of the testing. He then starts to go through problems to look for in deployments.

Jean talks about testing that IGMPv3 multicasts can be joined and then looks at checking the validity of SDP files which can be done by visual inspection and also SDPoker. A visual inspection is still important because whilst SDPoker checks the syntax, there can be basic issues in the content. 2022-7 testing is next. The simplest test is to turn one path off and check for disturbances, but this should be followed up by using a network emulator to deliver a variety of different types of errors of varying magnitudes to ensure there are no edge cases.

ST 2110 uses PTP for timing so, naturally, the timing system also needs to be tested. PTP is a bi-directional system for providing time to all parts of the network instead of a simple waterfall distribution of a centrally created time signal like black and burst. Whilst this system needs monitoring during normal operation, it’s important to check for proper grandmaster failover of your equipment.

PTP is also important when doing 2110 PCAPs in order to have accurate timing and to enable analysis with the EBU’s LIST project. Jean gives some guidelines on using and installing LIST and finishes his talk outlining some of the difficulties he has faced, providing tips on what to look out for.

Watch now!
Speakers

Jean Lapierre Jean Lapierre
Senior Director of Engineering,
Matrox