Video: VVC – The new Versatile Video Coding standard

The Codec landscape is a more nuanced place than 5 years ago, but there will always be a place for a traditional Codec that cuts file sizes in half while harnessing recent increases in computation. Enter VVC (Versatile Video Codec) the successor to HEVC, created by MPEG and the ITU by JVET (Joint Video Experts Team), which delivers up to 50% compression improvement by evolving the HEVC toolset and adding new features.

In this video Virginie Drugeon from Panasonic takes us through VVC’s advances, its applications and performance in this IEEE BTS webinar. VVC aims not only to deliver better compression but has an emphasis on delivering at higher resolutions with HDR and as 10-bit video. It also acknowledges that natural video isn’t the only video used nowadays with much more content now including computer games and other computer-generated imagery. To achieve this, VVC has had to up its toolset.

 

 

Any codec is comprised of a whole set of tools that carry out different tasks. The amount that each of these tools is used to encode the video is controllable, to some extent, and is what gives rise to the different ‘profiles’, ‘levels’ and ‘tiers’ that are mentioned when dealing with MPEG codecs. These are necessary to allow for lower-powered decoding to be possible. Artificially constraining the capabilities of the encoder gives maximum performance guarantees for both the encoder and decoder which gives manufacturers control over the cost of their software and hardware products. Virginie walks us through many of these tools explaining what’s been improved.

Most codecs split the image up into blocks, not only MPEG codecs but the Chinese AVS codecs and AV1 also do. The more ways you have to do this, the better compression you can achieve but this adds more complexity to the encoding so each generation adds more options to balance compression against the extra computing power now available since the last codec. VVC allows rectangles rather than just squares to be used and the size of sections can now be 128×128 pixels, also covered in this Bitmovin video. This can be done separately for the chroma and luma channels.

Virginie explains that the encoding is done through predicting the next frame and sending the corrections on top of that. This means that the encoder needs to have a decoder within it so it can see what is decoded and understand the differences. Virginie explains there are three types of prediction. Intra prediction uses the current frame to predict the content of a block, inter prediction which uses other frames to predict video data and also a hybrid mode which uses both, new to VVC. There are now 93 directional intra prediction angles and the introduction of matrix-based intra prediction. This is an example of the beginning of the move to AI for codecs, a move which is seen as inevitable by The Broadcast Knowledge as we see more examples of how traditional mathematical algorithms are improved upon by AI, Machine Learning and/or Deep Learning. A good example of this is super-resolution. In this case, Virginie says that they used machine learning to generate some matrices which are used for the transform meaning that there’s no neural network within the codec, but that the matrices were created based on real-world data. It seems clear that as processing power increases, a neural network will be implemented in future codecs (whether MPEG or otherwise).

For screen encoding, we see that intra block copying (IBC) is still present from HEVC, explained here from 17:30 IBC allows part of a frame to be copied to another which is a great technique for computer-generated content. Whilst this was in HEVC it was not in the basic package of tools in HEVC meaning it was much less accessible as support in the decoders was often lacking. Two new tools are block differential pulse code modulation & transform skip with adapted residual coding each discussed, along with IBC in this free paper.

Virginie moves on to Coding performance explaining that the JVET reference software called VTM has been used to compare against HEVC’s HM reference and has shown, using PSNR, an average 41% improvement on luminance with screen content at 48%. Fraunhofer HHI’s VVenc software has been shown to be 49%.

Along with the ability to be applied to screen content and 360-degree video, the versatility in the title of the codec also refers to the different layers and tiers it has which stretch from 4:2:0 10 bit video all the way up to 4:4:4 video including spatial scalability. The main tier is intended for delivery applications and the high for contribution applications with framerates up to 960 fps, up from 300 in HEVC. There are levels defined all the way up to 8K. Virginie spends some time explaining NAL units which are in common with HEVC and AVC, explained here from slide 22 along with the VCL (Video Coding Layer) which Virginie also covers.

Random access has long been essential for linear broadcast video but now also streaming video. This is done with IDR (Instantaneous Decoding Refresh), CRA (Clean Random Access) and GDR (Gradual Decoding Refresh). IDR is well known already, but GDR is a new addition which seeks to smooth out the bitrate. With a traditional IBBPBBPBBI GOP structure, there will be a periodic peak in bitrate because the I frames are much larger than the B and, indeed, P frames. The idea with GDR is to have the I frame gradually transmitted over a number of frames spreading out the peak. This disadvantage is you need to wait longer until you have your full I frame available.

Virginie introduces subpictures which are a major development in VVC allowing separately encoded pictures within the same stream. Effectively creating a multiplexed stream, sections of the picture can be swapped out for other videos. For instance, if you wanted a picture in picture, you could swap the thumbnail video stream before the decoder meaning you only need one decoder for the whole picture. To do the same without VVC, you would need two decoders. Subpictures have found use in 360 video allowing reduced bitrate where only the part which is being watched is shown in high quality. By manipulating the bitstream at the sender end.

Before finishing by explaining that VVC can be carried by both MPEG’s ISO BMFF and MPEG2 Transport Streams, Virginie covers Reference Picture Resampling, also covered in this video from Seattle Video Tech allows reference frames of one resolution to be an I frame for another resolution stream. This has applications in adaptive streaming and spatial scalability. Virginie also covers the enhanced timing available with HRD

Watch now!
Video is free to watch
Speaker

Virginie Drugeon Virginie Drugeon
Senior Engineer Digital TV Standardisation,
Panasonic

Video: Comparison of EVC and VVC against HEVC and AV1

AV1’s royalty-free status continues to be very appealing, but in raw compression is it losing ground now to the newer codecs such as VVC? EVC has also introduced a royalty-free model which could also detract from AV1’s appeal and certainly is an improvement over HEVC’s patent debacle. We have very much moved into an ecosystem of patents rather than the MPEG2/AVC ‘monoculture’ of the 90s within broadcast. What better way to get a feel for the codecs but to put them to the test?

Dan Grois from Comcast has been looking at the new codecs VVC and EVC against AV1 and HEVC. VVC and EVC were both released last year and join LCEVC as the three most recent video codecs from MPEG (VVC was a collaboration between MPEG and ITU). In the same way, HEVC is known as H.265, VVC can be called H.266 and it draws its heritage from the HEVC too. EVC, on the other hand, is a new beast whose roots are absolutely shared with much of MPEG’s previous DCT-based codecs, but uniquely it has a mode that is totally royalty-free. Moreover, its high-performant mode which does include patented technology can be configured to exclude any individual patents that you don’t wish to use thus adding some confidence that businesses remain in control of their liabilities.

Dan starts by outlining the main features of the four codecs discussing their partitioning methods and prediction capabilities which range from inter-picture, intra-picture and predicting chroma from the luma picture. Some of these techniques have been tackled in previous talks such as this one, also from Mile High Video and this EVC overview and, finally, this excellent deep dive from SMPTE in to all of the codecs discussed today plus LCEVC.

Dan explains the testing he did which was based on the reference encoder models. These are encoders that implement all of the features of a codec but are not necessarily optimised for speed like a real-world implementation would be. Part of the work delivering real-world implementations is using sophisticated optimisations to get the maths done quickly and some is choosing which parts of the standard to implement. A reference encoder doesn’t skimp on implementation complexity, and there is seldom much time to optimise speed. However, they are well known and can be used to benchmark codecs against each other. AV1 was tested in two configurations since

AV1 needs special treatment in this comparison. Dan explains that AV1 doesn’t have the same approach to GOPs as MPEG so it’s well known that fixing its QP will make it inefficient, however, this is what’s necessary for a fair comparison so, in addition to this, it’s also run in VBR mode which allows it to use its GOP structure to the full such as AV1’s invisible frames which carry data which can be referenced by other frames but which are never actually displayed.

The videos tested range from 4K 10bit down to low resolution 8 bit. As expected VVC outperforms all other codecs. Against HEVC, it’s around 40% better though carrying with it a factor of 10 increase in encoding complexity. Note that these objective metrics tend to underrepresent subjective metrics by 5-10%. EVC consistently achieved 25 to 30% improvements over HEVC with only 4.5x the encoder complexity. As expected AV1’s fixed QP mode underperformed and increased data rate on anything which wasn’t UHD material but when run in VBR mode managed 20% over HEVC with only a 3x increase in complexity.

Watch now!
Speaker

Dan Grois Dan Grois
Principal Researcher,
Comcast

Video: Scaling Video with AV1!

A nuanced look at AV1. If we’ve learnt one thing about codecs over the last year or more, it’s that in the modern world pure bitrate efficiency isn’t the only game in town. JPEG 2000 and, now, JPEG XS, have always been excused their high bitrate compared to MPEG codecs because they deliver low latency and high fidelity. Now, it’s clear that we also need to consider the computational demand of codec when evaluating which to use in any one situation.

John Porterfield welcomes Facebook’s David Ronca to understand how AV1’s arriving on the market. David’s the director of Facebook’s video processing team, so is in pole position to understand how useful AV1 is in delivering video to viewers and how well it achieves its goals. The conversation looks at how to encode, the unexpected ways in which AV1 performs better than other codecs and the state of the hardware and software decoder ecosystem.

David starts by looking at the convex hull, explaining that it’s a way of encoding content multiple times at different resolutions and bitrates and graphing the results. This graph allows you to find the best combination of bitrate and resolution for a target quality. This works well, but the multiple encodes burdens the decision with a lot of extra computation to get the best set of encoding parameters. As proof of its effectiveness, David cites a time when a 200kbps max target was given for and encoder of video plus audio. The convex hull method gave a good experience for small screens despite the compromises made in encoding fidelity. The important part is being flexible on which resolution you choose to encode because by allowing the resolution to drift up or down as well as the bitrate, higher fidelity combinations can be found over keeping the resolution fixed. This is called per-title encoding and was pioneered by Netflix as discussed in the linked talk, where David previously worked and authored this blog post on the topic.

It’s an accepted fact that encoder complexity increases for every generation. Whilst this makes sense, particularly in the standard MPEG line where MPEG 2 gave way to AVC which gave way to HEVC which is now being superseded by VVC all of which achieved an approximately 50% compression improvement at the cost of a ten-fold computation increase. But David contends that this buries the lede. Whilst it’s true that the best (read: slowest) compression improves by 50% and has a 10% complexity increase, it’s often missed that at the other end of the curve, one of the fastest settings of the newer codec can now match the best of the old codec with a 90% reduction in computation. For companies working in the software world encoding, this is big news. David demonstrates this by graphing the SVT-AV1 encoder against the x265 HEVC encoder and that against x264.

David touches on an important point, that there is so much video encoding going on in the tech giants and distributed around the world, that it’s important for us to keep reducing the complexity year on year. As it is now, with the complexity increasing with each generation of encoder, something has to give in the future otherwise complexity will go off the scale. The Alliance for Open Media’s AV1 has something to say on the topic as it’s improved on HEVC with only a 5% increase in complexity. Other codecs such as MPEG’s LCEVC also deliver improved bitrate but at lower complexity. There is a clear environmental impact from video encoding and David is focused on reducing this.

AOM is also fighting the commercial problem that codecs have. Companies don’t mind paying for codecs, but they do mind uncertainty. After all, what’s the point in paying for a codec if you still might be approached for more money. Whilst MPEG’s implementation of VVC and EVC aims to give more control to companies to help them control their risk, AOM’s royalty-free codec with a defence fund against legal attacks, arguably, gives the most predictable risk of all. AOM’s aim, David explains, is to allow the web to expand without having to worry about royalty fees.

Next is some disappointing news for AV1 fans. Hardware decoder deployments have been delayed until 2023/24 which probably means no meaningful mobile penetration until 2026/27. In the meantime the very good dav1d decoder and also gav1 are expected to fill the gap. Already quite fast, the aim is for them to be able to do 720p60 decoding for average android devices by 2024.

Watch now!
Speakers

David Ronca David Ronca
Director, Video Encoding,
Facebook
John Porterfield
Freelance Video Webcast Producer and Tech Evangelist
JP’sChalkTalks YouTube Channel

The New Video Codec Landscape – VVC, EVC, HEVC, LCEVC, AV1 and more

In the penultimate look back at the top articles of 2020, we recognise the continued focus on new codecs. Let’s not shy away from saying 2020 was generous giving us VVC, LCEVC and EVC from MPEG. AV1 was actually delivered in 2018 with an update (Errata 1) in 2019. However, the industry has avidly tracked the improved speeds of the encoder and decoder implementations.
Lastly, no codec discussion has much relevance without comparing to AV1, HEVC and VP9.

So with all these codecs spinning around it’s no surprise that one of the top views of 2020 was a video entitled “VVC, EVC, LCEVC, WTF? – An update on the next hot codecs from MPEG”. This video was from 2019 and since these have all been published now, this extensive roundup from SMPTE is a much better resource to understand these codecs in detail and in context with their predecessors.

Click here to read the article and watch the video.

The article explains many of the features of the new codecs: both how they work and also why there are three. Afterall, if VVC is so good, why release EVC? We learn that they optimise for different features such as computation, bitrate and patent licensing among other aspects.

Speakers

Sean McCarthy Sean McCarthy
Director, Video Strategy and Standards,
Dolby Laboratories
Walt Husak Walt Husak
Director, Image Technologies,
Dolby Laboratories