Video: ATSC 3.0 Part II – Cutting Edge OFDM with IP

RF, modulation, Single Frequency Networks (SFNs) – there’s a lot to love about this talk which is the second in a series of ATSC seminars however much is transferable to DVB. Today we’re focussed on transmission showing how ATSC 3.0 improves on DVB-T, how it simultaneously delivers feeds with different levels of robustness, the benefits of SFNs and much more.

In the second in this series of ATSC 3.0 talks, GatesAir’s Joe Seccia leads the proceedings starting by explaining why ATSC 3.0 didn’t simply adopt DVB-T2’s modulation scheme. The answer, explained in detail by Joe, is that by putting in further work, they got closer to the Shannon limit than DVB-T2 does. He continues to highlight the relevant standards which comprise the ATSC 3.0 standard which define the RF physical layer.

After showing how the different processes such as convolutional encoding and multiplexing fit together in the transmission chain, Joe focuses in on Layered Division Multiplexing (LDM) where a high robustness signal can be carefully combined with a lower robustness signal such that where one interferes with the other, there is enough separation to allow it to be decoded.

Next we are introduced to PLPs – Physical Layer Pipes. These can also be found in DVB-T2 and DVB-S2 and are logical channels carrying one or more services, with a modulation scheme and robustness particular to that individual pipe. Within those lie Frames and Subframes and Joe gives a good breakdown of the difference in meaning of the three, the Frame being at the top of the pile containing the other two. We look at how the bootstrap signal at a known modulation scheme and symbol rate details what’s coming next such which allow this very dynamic working with streams being sent with different modulation settings. The bootstrap is also important as it contains Early Alert System (EAS) signalling.

Layered Division Multiplexing is the next hot topic we hit and this elicits questions from the audience. LDM is important because it allows two streams to be sent at the same time with independent or related broadcasts. For instance this could deliver UHD content with HD underneath with the HD modulated to give much better robustness.

Another way of maintaining robustness is to establish an SFN which is now possible with ATSC 3.0. Joe explains how this is possible and how the RF from different antennae can help with reception. Importantly he also outlines how toward out the maximum separation between antennae and talks through different deployment techniques. He then works through some specific cases to understand the transmission power needed.

As the end of the video nears, Joe talks about MIMO transmission explaining how this, among other benefits, can allow channel bonding where two 6Mhz channels can be treated as a single 12Mhz channel. He talks about how PTP can complement GPS in maintaining timing if diverse systems are linked with ethernet and he then finishes with a walkthrough of configuring a system.

Watch now!
Speakers

Joe Seccia Joe Seccia
Manager, TV Transmission Market and Product Development Strategy
GatesAir

Video: ASTC 3.0 Basics, Performance and the Physical Layer

ATSC 3.0 is a revolutionary technology bringing IP into the realms of RF transmission which is gaining traction in North America and is deployed in South Korea. Similar to DVB-I, ATSC 3.0 provides a way to unite the world of online streaming with that of ‘linear’ broadcast giving audiences and broadcasters the best of both worlds. Looking beyond ‘IP’, the modulation schemes are provided are much improved over ATSC 1.0 providing much better reception for the viewer and flexibility for the broadcaster.

Richard Chernock, now retired, was the CSO of Triveni Digital when he have this talk introducing the standard as part of a series of talks on the topic. ATSC, formed in 1982 brought the first wave of digital television to The States and elsewhere, explains Richard as he looks at what ATSC 1.0 delivered and what, we now see, it lacked. For instance, it’s fixed 19.2Mbps bitrate hardly provides a flexible foundation for a modern distribution platform. We then look at the previously mentioned concept that ATSC 3.0 should glue together live TV, usually via broadcast, with online VoD/streaming.

The next segment of the talk looks at how the standard breaks down into separate standards. Most modern standards like STMPE’s 2022 and 2110, are actually a suite of individual standards documents united under one name. Whilst SMPTE 2110-10, -20, -30 and -40 come together to explain how timing, video, audio and metadata work to produce the final result of professional media over IP, similarly ATSC 3.0 has sections on explaining how security, applications, the RF/physical layer and management work. Richard follows this up with a look at the protocol stack which serves to explain which parts are served on TCP, which on UDP and how the work is split between broadcast and broadband.

The last section of the talk looks at the physical layer. That is to say how the signal is broadcast over RF and the resultant performance. Richard explains the newer techniques which improve the ability to receive the signal, but highlights that – as ever – it’s a balancing act between reception and bandwidth. ATSC 3.0’s benefit is that the broadcaster gets to choose where on the scales they want to broadcast, tuning for reception indoors, for high bit-rate reception or anywhere in between. With less than -6dB SNR performance plus EAS wakeup, we’re left with the feeling that there is a large improvement over ATSC 1.0.

The talk finishes with two headlining features of ATSC 3.0. PLPs, also known as Physical Layer Pipes, are another headlining feature of ATSC 3.0, where separate channels can be created on the same RF channel. Each of these can have their own robustness vs bit rate tradeoff which allows for a range of types of services to be provided by one broadcaster. The other is Layered Division Multiplexing which allows PLPs to be transmitted on top of each other which allows 100% utilisation of the available spectrum.

Watch now!
Speaker

Richard Chernock Dr. Richard Chernock
Former CSO,
Triveni Digital

Video: Beam hopping in DVB-S2X

Beam hopping is the relatively new ability of a satellite to move its beam so that it’s transmitting to a different geographical area every few milliseconds. This has been made possible by the advance of a number of technologies inside satellite which make this fast, constant, switching possible. DVB is harnessing this new capability to more efficiently deliver bandwidth to different areas.

This talk starts off with a brief history of DVB-S2 moving to DVB-S2X and the successes of that move. But we then see that geographically within a wide beam, two factors come in to play: The satellite throughput is limited by the amplifiers and TWTs, plus certain areas within the beam needed more throughput than others. By dynamically pointing a more focused beam using ferrite switches and steerable antennae – to name but two technologies at play – we see that up to 20% of unmet demand could be addressed.

The talk continues with the ESA’s Nader Alagha explaining some of the basics of directing beams talking about moving from cells and clusters (geographical areas) and then how ‘dwell times’ are the amount of time spent at each cell. He then moves on to give an overview of the R&D work underway and the expected benefits.

A little like in older CRT Televisions a little gap needs to be put into the signal to cover the time the beam is moving. For analogue television this is called ‘blanking’, for stellites this is an ‘idle sequence’. Each time a beam hopes, the carrier frequency, bandwidth and number of carriers can change.

Further topics explored are implementing this on geostationary and non-geostationary satellites, connecting hopping strategy to traffic and the channel models that can be created around beam hopping. The idea of ‘superframes’ is detailed where frames that need to be decoded with a very low SNR, the information is spread out and duplicated an number of times. This is supported in beam hopping with some modifications which require some pre-ambles and the understanding of fragmentation of these frames.

The talk closes discussing looking at future work and answering questions from the webinar attendees.

Watch now!
Speakers

Nader Alagha Nader Alagha
Senior Communications Engineer,
ESA ESTEC (European Space Research and Technology Centre)
Peter Nayler Peter Nayler
Business Manager,
EASii IC
Avi Freedman
Director of System Engineering,
Satixfy

Webinar: Broadcaster VOD: Delivering the next-generation of catch-up viewing

With Amazon, Netflix and so many other VOD services available, broadcasters like the BBC and Discovery are investing a lot in their own VOD services, known as Broadcaster VOD (BVOD) in order to maintain relevance, audiences and revenue.

Commercial broadcasters such as Sky, ITV and Channel 4 are trying hard to attract advertisers and “have all launched new ad formats, struck deals with ad tech vendors to build marketplaces and set up programmatic teams to manage them” according to a report from digiday.com. As such this means that the battle for advertisers wallets is moving more towards VOD from linear.

Date: Thursday 30 January, 14:00 GMT / 9 a.m. ET

With this in mind, IBC365 will discuss the business models, platforms and strategies being used by BVOD platforms. They will look at the BBC’s move to build a deep content library of free-to-view box sets, and to the importance of data, personalisation and addressable advertising models.

Further more, this webinar will talk about the commercial and technical requirements to build a BVOD to a standard that’s going to stand on its own in this increasingly crowded, but well-funded marketplace.

Register now!
Speakers

Richard Davidson-Houston Richard Davidson-Houston
Founder,
Finally Found Ltd.
Roma Kojima Roma Kojima
Senior Director OTT Video (CBC Gem),
Canadian Broadcasting Corporation
Niels Baas Niels Baas
Managing Director, NLZIET