Video: An Overview of the ISO Base Media File Format

ISO BMFF a standardised MPEG media container developed from Apple’s Quicktime and is the basis for cutting edge low-latency streaming as much as it is for tried and trusted mp4 video files. Here we look into why we have it, what it’s used for and how it works.

ISO BMFF provides a structure to place around timed media streams whilst accommodating the metadata we need for professional workflows. Key to its continued utility is its extensible nature allowing additional abilities to be added as they are developed such as adding new codecs and metadata types.

ATSC 3.0’s streaming mechanism MMT is based on ISO BMFF as well as the low-latency streaming format CMAF which shows that despite being over 18 years old, the ISO BMFF container is still highly relevant.

Thomas Stockhammer is the Director of Technical Standards at Qualcomm. He explains the container format in structure and origin before explaining why it’s ideal for CMAF’s low-latency streaming use case, finishing off with a look at immersive media in ISO BMFF.

Watch now!

Speaker

Thomas Stockhammer Thomas Stockhammer
Director Technical Standards,
Qualcomm

Video: Next Generation Broadcast Platform – ATSC 3.0

Continuing our look at ATSC 3.0, our fifth talk straddles technical detail and basic business cases. We’ve seen talks on implementation experience such as in Chicago and Phoenix and now we look at receiving the data in open source.

We’ve covered before the importance of ATSC 3.0 in the North American markets and the others that are adopting it. Jason Justman from Sinclair Digital states the business cases and reasons to push for it despite it being incompatible with previous generations. He then discusses what Software Defined Radio is and how it fits in to the puzzle. Covering the early state of this technology.

With a brief overview of the RF side of ATSC 3.0 which itself is a leap forward, Jason explains how the video layer benefits. Relying on ISO BMMFF, Jason introduces MMT (MPEG Media Transport) explaining what it is and why it’s used for ATSC 3.0.

The next section of the talk showcases libatsc3 whose goal is to open up ATSC 3.0 to talented Software Engineers and is open source which Jason demos. The library allows for live decoding of ATSC 3.0 including MMT material.

Finishing his talk with a Q&A including SCTE 34 and an interesting comparison between DVB-T2 and ATSC 3.0 makes this a very useful talk to fill in technical gaps that no other ATSC 3.0 talk covers.

Complete slide pack

Watch now!
Speakers

Jason Justman Jason Justman
Senior Principal Architect,
Sinclair Digital

Video: Using CMAF to Cut Costs, Simplify Workflows & Reduce Latency

There are two ways to stream video online, either pushing from the server to the device like WebRTC, MPEG transport streams and similar technologies, or allowing the receiving device to request chunks of the stream which is how the majority of internet streaming is done – using HLS and similar formats.

Chunk-based streaming is generally seen as more scalable of these two methods but suffers extra latency due to buffering several chunks each of which can represent between 1 and, typically, 10 seconds of video.

CMAF is one technology here to change that by allowing players to buffer less video. How does this achieve this? An, perhaps more important, can it really cut costs? Iraj Sodagar from NexTreams is here to explain how in this talk from Streaming Media West, 2018.

Iraj covers:

  • A brief history of CMAF (Common Media Format)
  • The core technologies (ISO BMFF, Codecs, captions etc.)
  • Media Data Object (Chunks, Fragments, Segments)
  • Different ways of video delivery
  • Switching Sets (for ABR)
  • Content Protection
  • CTA WAVE project
  • Wave content specifications
  • Live Linear Content with Wave & CMAF
  • Low-latency CMAF usage
  • HTTP 1.1 Chunked Transfer Encoding
  • MPEG DASH

Watch now!

Speaker

Iraj Sodagar Iraj Sodagar
Independant Consultant
Multimedia System Architect, NexTreams