Video: AES67 over WAN

Deeply embedded in the audio industry and adopted into SMPTE ST 2110, AES67 workflows surround us. Increasingly our workflows are in multiple locations so moving AES67 on the WAN and the internet is essential. If networks were always perfect, this would be easy but as that’s not the case, this RAVENNA talk examines what the problems are and how to solve them.

Andreas Hildebrand introduces the video with an examination of how the WAN, whether that’s a company’s managed wide area network or the internet at large, is different from a LAN. Typical issues are packet loss, varying latency meaning the packets arrive with jitter, lack of PTP and multicast. With this in mind, Nicolas Sturmel from Merging Technologies takes the reins to examine the solutions.

Nicolas explains the typically EBU Tech 3326 (also known as ACIP) is used for WAN contribution which specifies how a sender and receiver communicate and the codecs to be used. Although PCM is available, many codecs such as AptX are also prescribed for use. Nicolas says that ACIP is great for most applications but if you need low-latency, precise timing and PCM-quality staying AES67 may be the best policy, even over the WAN.

Having identified your AES6-over-WAN workflow, the question is how to pull it off. Nicolas looks at three methods, one is FEC whereby you are constantly sending redundant data. FEC can send up to around 25% extra data so that if any is lost, the extra information sent can be leveraged to determine the lost values and reconstruct the stream. This is can work well but requires sending this extra data constantly therefore putting up your bandwidth. It can also only deal with certain losses requiring them to be of a short duration.

Instead of FEC, you can use RIST, SRT or a similar re-transmission technology. These will actively recover any lost packets and have the benefit that you only transmit more data when you have lost data. Lastly, he mentions SMPTE ST 2022-7 which uses two paths of identical data to cover losses in any one of them. Although this is 100% extra data, the benefit is that it can deal with any type of loss including a complete path failure which neither of the others can do. It is, however possible to combine FEC or RIST with a 2022-7 workflow so you can have two levels of protection.

Timing over the WAN is not ideal as PTP loses accuracy over long-latency links and it assumes symmetry. On the internet, it’s possible to get links where the latency is longer in one direction than the other. An easy, though potentially costly, workaround for distributing PTP over the WAN is to use GPS, GLONASS or similar to synchronise grandmaster clocks at each location.

Watch now!
Speakers

Nicolas Sturmel Nicolas Sturmel
Product Manager & Senior Technologist
Merging Technologies
Andreas Hildebrand Andreas Hildebrand
RAVENNA Evangelist,
ALCNetworx

Video: AES67/SMPTE ST 2110 Audio Transport & Routing (NMOS IS-08)

Let’s face it, SMPTE ST 2110 isn’t trivial to get up and running at scale. It carries audio as AES67, though with some restrictions which can cause problems for full interoperability with non-2110 AES67 systems. But once all of this is up and running, you’re still lacking discoverability, control and management. These aspects are covered by AMWA’s NMOS IS-04, IS-05 and IS0-08 projects.

Andreas Hildrebrand, Evangelist at ALX NetworX, takes the stand at the AES exhibition to explain how this can all work together. He starts reiterating one of the main benefits of the move to 2110 over 2022-6, namely that audio devices don’t need to receive and de-embed audio. With a dependency on PTP, SMPTE ST 2110-30 an -31 define carriage of AES67 and AES3.

We take a look at IS-04 and IS-05 which define registration, discovery and configuration. Using an address received from DHCP, usually, new devices on the network will put in an entry into an IS-04 registry which can be queried by an API to find out what senders and listeners are available in a system. IS-05 can then use this information to create connections between devices. IS-05, Andreas explains, is able to issue a create connection request to endpoints asking them to connect. It’s up to the endpoints themselves to initiate the request as appropriate.

Once a connection has been made, there remains the problem of dealing with audio mapping. Andreas uses the example of a single stream containing multiple channels. Where a device only needs to use one or two of these, IS-08 can be used to tell the receiver which audio it should be decoding. This is ideal when delivering audio to a speaker. Andreas then walks us through worked examples.

Watch now!
Speaker

Andreas Hildebrand Andreas Hildebrand
Ravenna Technology Evangelist,
ALC NetworX

Video: AES67 & SMPTE ST 2110 Timing and Synchronization

Good timing is essential in production for AES67 audio and SMPTE ST 2110. Delivering timing is no longer a matter of delivering a signal throughout your facility, over IP timing is bidirectional and forms a system which should be monitored and managed. Timing distribution has always needed design and architecture, but the detail and understanding needed are much more. At the beginning of this talk, Andreas Hildebrand explains why we need to bother with such complexity, after all, we got along very well for many years without it! Non-IP timing signals are distributed on their own cables as part of their own system. There are some parts of the chain which can get away without timing signals, but when they are needed, they are on a separate cable. With IP, having a separate network for distribution of timing doesn’t make sense so, whether you have an analogue or digital timing signal, that needs to be moving into the IP domain. But how much accuracy in timing to you need? Network devices already widely use NTP which can achieve an accuracy of less than a millisecond. Andreas explains that this isn’t enough for professional audio. At 48Khz, AES samples happen at an accuracy of plus or minus 10 microseconds with 192KHz going down to 2.5 microseconds. As your timing signal has to be less than the accuracy you need, this means we need to achieve nanosecond precision.

Daniel Boldt from timing specialists Meinberg is the focus of this talk explaining how we achieve this nano-second precision. Enter PTP, the Precision Time Protocol. This is a cross-industry standard from the IEEE uses in telcoms, power, finance and in many others wherever a network and its devices need to understand the time. It’s not a static standard, Daniel explains, and it’s just about to see its third revision which, like the last, adds features.

Before finding out about the latest changes, Daniel explains how PTP works in the first place; how is it possible to accurately derive time down to the nanosecond over a network which will have variable propagation times? We see how timestamps are introduced into the network interface controller (NIC) at the last moment allowing the timestamps to be created in hardware which removes some of the variable delays that is typical in software. This happens, Daniel shows, in the switch as well as in the server network cards. This article will refer to either a primary clock or a grand master. Daniel steps us through the messages exchanged between the primary and secondary clock which is the interaction at the heart of the protocol. The key is that after the primary has sent a timestamp, the secondary sends its timestamp to the primary which replies saying the time it received the secondary the reply. The secondary ends up with 4 timestamps that it can combine to determine its offset from the primary’s time and the delay in receiving messages. Applying this information allows it to correct the clock very accurately.

PTP Primary-Secondary Message Exchange.
Source: Meinberg

Most broadcasters would prefer to have more than one grandmaster clock but if there are multiple clocks, how do you choose which to sync from? Timing systems have long used strata whereby clocks are rated based on accuracy, either for internal accuracy & stability or by what they are synched to. This is also true for PTP and is part of the considerations in the ‘Best Master Clock Algorithm’. The BMCA starts by allowing a time source to assess its own accuracy and then search for better options on the network. Clocks announce themselves to the network and by listening to other announcements, a clock can decide if it should become a primary clock if, for instance, it hears no announce messages at all. For devices which should never be a grand primary, you can force them never to decide to become grand masters. This is a requisite for audio devices participating in ST 2110-3x.

Passing PTP around the network takes some care and is most easily done by using switches which understand PTP. These switches either run a ‘boundary clock’ or are ‘transparent clocks’. Daniel explores both of these scenarios explaining how the boundary clock switch is able to run multiple primary and secondary clocks depending on what is connected on each interface. We also see what work the switches have to do behind the scenes to maintain timing precision in transparent mode. In summary, Daniel summaries boundary clocks as being good for hierarchical systems and scales well but requires continuous monitoring whereas transparent clocks are simpler to deploy and require minimal monitoring. The main issue with transparent clocks is that they don’t scale well as all your timing messages are still going back to one main clock which could get overwhelmed.

SMPTE 2022-7 has been a very successful standard as its reliance only on RTP has allowed it to be widely applicable to compressed and uncompressed IP flows. It is often used in 2110 networks, too, where two separate networks are run and brought together at the receiving device. That device, on a packet-by-packet basis, is free to derive its audio/video stream from either network. This requires, however, exactly the same timing on both networks so Daniel looks at an example diagram where this PTP sharing is shown.

PTP’s still evolving and in this next section, Daniel takes us through some of the coming improvements which are also outlined at Meinberg’s blog. These are profile isolation, multi-domain clocks, security improvements and more.

Andreas takes the final section of the webinar to explain how we use PTP in media networks. All receivers will have the same clock which could be derived from GPS removing the need to distribute PTP between sites. 2110 is based on RTP which requires a timestamp to be added to every packet delivered to the network. RTP is a wrapper around IP packets which includes a timestamp which can be derived from the media clock counter.

Andreas looks at how accurate RTP delivery is achieved, dealing with offset values, populating the timestamp from the PTP clock for realties streams and he explains how the playout delay is calculated from the link offset. Finally, he shows the relatively simple process of synchronisation art the playout device. With all the timestamps in the system, synchronising playback of audio, video and metadata using buffers can be achieved fairly easily. Unfortunately, timestamps are easily destroyed by secondary processing (for instance loudness adjustment for an audio stream). Clearly, if this happened, synchronisation at the receiver would be broken. Whilst this will be addressed by out-of-band messaging in future standards, for now, this is managed by a broadcast controller which can take delay information from processing stages and distribute this to receivers.

Watch now!
Speakers

Daniel Boldt Daniel Boldt
Head of Software Development,
Meinberg
Andreas Hildebrand Andreas Hildebrand
RAVENNA Technology Evangelist,
ALC NetworX

Video: AES67 & ST 2110 Deeper Dive – The Audio Files

A deeper dive here, in the continuing series of videos looking at AES67, SMPTE ST 2110 and Ravenna. Andreas Hildebrand from ALC Networx is back to investigate the next level down on how AES67 and ST 2110 operate and how they can be configured. The talk, however, remains accessible throughout and starts with an reminder of what AES67 is and why it exists. This is was also covered in his first talk.

After explaining the AES67 was created as a way for multiple audio-over-IP standards to interoperate, Andreas looks at the stack, stepping through it to explain each element. The first topic is timing. He explains that every device on the AES67 network is not only governed by PTP, but it’s also runs its own clock which is called the Local Clock. From the Local Clock, the device then also creates a Media Clock which is based on the Local Clock time but is used to crate any frequency needed for the media (48KHz, for instance). Finally an RTP clock is kept for transmission over the network.

The next item featured on the stack is encoding. AES67 is baed on linear audio, also known as PCM. AES67 ensures that 48KHz, 16 & 24-bit audio is supported on all devices and allows up to 8 channels per stream. Importantly, Andreas explains the different versions of packet time which are supported, 1ms being mandatory which allows 48 samples of 48 KHz audio into teach IP packet.

SDP – Session Description Protocol is next which describes in a simple text file what’s in the AES67 stream giving its configuration. Then Andreas looks at what Link Offset is and examines its role in determining latency and the types of latency it’s been made to compensate for. He then talks you through working out what latency setting you need to use including taking into account the number of switches in a network and our frame size.

SMPTE ST 2110 is the focus for the last part of the talk. This, Andreas explains, is a way of moving, typically uncompressed, professional media (also known as essences) around a network for live production with very low latency. It sends audio separately to the video and uses AES67 to do so. This is defined in standard ST 2110-30. However, there are some important configurations for AES67 which are mandated in order to be compatible which Andreas explains. One example is forcing all devices to be slave only, another is setting the RTP clock offset to zero. Andreas finishes the talk by summarising what parts of ST 2110 and AES67 overlap including discussing the frame sizes supported.

Watch now!
Download the presentation
Speaker

Andreas Hildebrand Andreas Hildebrand
Senior Product Manager,
ALC NetworX Gmbh.