Video: M6 France – Master Control and Playout IP Migration

French broadcast company M6 Group has recently moved to an all-IP workflow, employing the SMPTE ST 2110 suite of standards for professional media delivery over IP networks. The two main playout channels and MCR have been already upgraded and the next few channels will be transitioned to the new core soon.

The M6 system comprises equipment from five different vendors (Evertz, Tektronix, Harmonic, Ross and TSL), all managed and controlled using the AMWA NMOS IS-04 and IS-05 specifications. Such interoperability is an inherent feature of SMPTE ST 2110 suite of standards allowing customers to focus on the operational workflows and flexibility that IP brings them. Centralised management and configuration of the system is provided through web interfaces which also allows for easy and automated addition of a new equipment.

Thanks to Software Defined Orchestration and intuitive touch screen interfaces information such as source paths, link bandwidth / status, and device details can be quickly accessed via a web GUI. As the system is based on IP network, it is possible to come in and out of fabric numerous times without the same costs implications that you would have in the SDI world. Every point of the signal chain can be easily visualised which enables broadcast engineers to maintain and configure the system with ease.

You can see the slides here.

Watch now!

Speaker

Slavisa Gruborovic
Solution Architect
Evertz Microsystems Inc.
Fernando Solanes
Director Solutions Engineering
Evertz Microsystems Inc.

 

Video: The 7th Circle of Hell; Making Facility-Wide Audio-over-IP Work

audio-over-ip

When it comes to IP, audio has always been ahead of video. Whilst audio often makes up for it in scale, its relatively low bandwidth requirements meant computing was up to the task of audio-over-IP long before uncompressed video-over-IP. Despite the early lead, audio-over-IP isn’t necessarily trivial. However, this talk aims to give you a heads up to the main hurdles so you can address them right from the beginning.

Matt Ward, Head of Video for UK-based Jigsaw24, starts this talk revising the reasons to go audio over IP (AoIP). The benefits vary for each company. For some, reducing cabling is a benefit, many are hoping it will be cheaper, for others achievable scale is key. Matt’s quick to point out the drawbacks we should be cautious of, not least of which are complexity and skill gaps.

Matt fast-tracks us to better installations by hitting a list of easy wins some of which are basic, but a disproportionately important as the project continues i.e. naming paths and devices and having IP addresses in logical groups. Others are more nuanced like ensuring cable performance. For CAT6 cabling, it’s easy to get companies to test each of your cables to ensure the cable and all terminations are still working at peak performance.

Planning your timing system is highlighted as next on the road to success with smaller facilities more susceptible to problems if they only have one clock. But any facility has to be carefully considered and Matt points out that the Best Master Clock Algorithm (BMCA).

Network considerations are the final stop on the tour, underlining that audio doesn’t have to run in its own network as long as QoS is used to maintain performance. Matt details his reasons to keep Spanning Tree Protocol off, unless you explicitly know that you need it on. The talk finishes by discussing multicast distribution and IGMP snooping.

Watch now!
Speaker

Matt Ward Matt Ward
Head of Audio,
Jigsaw24

Video: IP Test and Measurement for ST 2110 Systems

As the transition to IP-based transport for video, audio, and data continues. The early adopters have already demonstrated the operational and commercial benefits of COTS IP infrastructure and SMPTE ST 2110 video-over-IP standard suite becomes mature now. However, configuration and troubleshooting of IP systems requires a completely new skillset. Broadcast engineers need to gain an understanding of the technology and the new techniques required to monitor these signals.

In this video Kevin Salvidge from Leader shows what test and measurement tools you need to ensure you continue to deliver the same quality of service that can be achieved with SDI systems.

Kevin looks at the main differences between traditional and IP systems which stem as much from a move from synchronous to asynchronous infrastructure as the way you measure how well the system is working.

The following topics are covered:

  • Frame Check Sequence (FCS), Cyclic Redundancy Check (CRC)
  • Packet jitter measurement (avoiding buffer underrun)
  • Monitoring ST 2022-7 path delay between the two feeds
  • PTP synchronization (offset and delay graphs, synchronisation accuracy)
  • Checking that video, audio and ANC signals are synchronised with PTP and RTP timing measurement
  • Packet Header Information looking at MAC, IP, UDP, RTP as well as the payload
  • SFP Information (10/25 Gb, multimode / single mode etc.)
  • IP Event Log e.g. Grand Master change
  • Hybrid IP and SDI Video and Audio Test and Measurement

You can see the slides here.

Watch now!

Speaker

Kevin Salvidge
European Regional Development Manager
Leader

Video: Avoiding Traps and Pitfalls When Designing SMPTE 2059-2 Networks

As the industry gains more and more experience in implementing PTP, AKA SMPTE 2059-2, timing systems it’s natural to share the experiences so we can all find the best way to get the job done.

Thomas Kernen is a staff architect at Mellanox with plenty of experience under his belt regarding PTP so he’s come to the IP Showcase at IBC 2019 to explain.

The talk starts by discussing what good timing actually is and acknowledging everyone’s enthusiasm going into a project for a well designed, fully functioning system. But, importantly, Thomas then looks at a number of real-world restrictions that come into projects which compromise our ability to deliver a perfect system.

Next Thomas looks at aspects of a timing strategy to be careful of. The timing strategy outlines how the timing of your system is going to work, whether that is message rates or managing hierarchy amongst many other possibilities.

The network design itself, of course, has an important impact on your system. This starts at the basics of whether you build a network which is, itself, PTP aware. In general, Thomas says, it should be PTP aware. However, for smaller networks, it may be practical to use without.

Security gets examined next, talking about using encrypted transports, access control lists, ensuring protect interfaces etc. with the aim of preventing unintended access, removing the ability to access physically – much of this is standard IT security, but it’s so often ignored that it’s important to point it out.

PTP is a system, it’s not a signal like B&B so monitoring is important. How will you know the health of your PTP distribution? You need to monitor on the network side, from the point of view of the deices themselves but also analyse the timing signals themselves, for instance, by comparing the timing signals between the main and reserve.

Finally, Thomas warns about designing redundancy systems since “Redundancy in PTP doesn’t exist.” and then finishes with some notes on properly completing a PTP project.

Watch now!

Speaker

Thomas Kernen Thomas Kernen
Staff Architect,
Mellanox Technologies