Video: A Frank Discussion of NMOS

What NMOS isn’t is almost as important as what NMOS actually is when it comes to defining a new project implementing SMPTE ST 2110. Written by AMWA, NMOS is a suite of open specifications which help control media flow hence the name: Network Media Open Specifications. Typically NMOS specifications are used alongside the ST 2110 standards but in this hype-free panel, we hear that 2110 isn’t the only application of NMOS.

AMWA Executive Director Brad Gilmer introduces this ‘frank’ panel with Imagine’s John Mailhot explaining the two meanings ‘NMOS’ has. The first is the name of the project we have just introduced in this article. The second is as shorthand for the two best-known specifications created by the project, IS-04 and IS-05. Together, these allow new devices to register their availability to the rest of the system and to receive instructions regarding sending media streams. There are plenty of other specifications which are explained in this talk of which two more are mentioned later in this video: IS-08 which manages audio channel mapping and IS-09 which allows new devices to get a global configuration to automatically find out facts like their PTP domain.

 

 

Security is “important and missing previously,” says Jed Deame from Nextera but explains that since NMOS is predominantly a specification for HTTP API calls, there is nothing to stop this from happening as HTTPS or another protocol as long as it provides both encryption and authorisation. The panel then explores the limits of the scope of NMOS. For security, its scope is to secure the NMOS control traffic, so doesn’t stretch to securing the media transport or, say, PTP. Furthermore, for NMOS as a whole, it’s important to remember it defines control and not more than control. Brad says, though, that even this scope is ambiguous as where does the concept of ‘control’ stop? Is a business management system control? What about scheduling of media? Triggering playback? There have to be limited.

Imagine Communications’ John Mailhot explores the idea of control asking how much automation, and hence NMOS-style control, can help realise one of the promises of IP which is to reduces costs by speeding up system changes. Previously, Brad and John explain, changing a studio from doing NFL to doing NHL may take up to a month of rewiring and reprogramming. Now that rewiring can be done in software, John contends that the main task is to make sure the NMOS is fully-fledged enough to allow interoperable enumeration, configuration and programming of links within the system. The current specifications are being reinforced by ‘modelling’ work whereby the internal logical blocks of equipment, say an RGB gain control, can be advertised to the network as a whole rather than simply advertising a single ‘black box’ like an encoder. Now it’s possible to explain what pre and post-processing is available.

Another important topic explored by NVIDIA’s Richard Hastie and Jeremy Nightingale from Macnica, is the use of NMOS specifications outside of ST 2110 installations. Richard says that NVIDIA is using NMOS in over 200 different locations. He emphasises its use for media whether that be HEVC, AV1 or 2110. As such, he envisages it being used by ‘Twitch streamers’ no doubt with the help of the 2110-over-WAN work which is ongoing to find ways to expose NMOS information over public networks. Jeremy’s interest is in IPMX for ProAV where ‘plug and play’ as well as security are two of the main features being designed into the package.

Lastly, there’s a call out to the tools available. Since NMOS is an open specification project, the tools are released as Open Source which companies being encouraged to use the codebase in products or for testing. Not only is there a reference client, but Sony and BBC have released an NMOS testing tool and EasyNMOS provides a containerised implementation of IS-04 and IS-05 for extremely quick deployments of the toolset.

Watch now!
Speakers

Brad Gilmer Brad Gilmer
Executive Director, Video Services Forum
Executive Director, Advanced Media Workflow Association (AMWA)
John Mailhot John Mailhot
CTO Networking & Infrastructure
Jed Deame Jed Deame
CEO,
Nextera Video
Richard Hastie Richard Hastie
Senior Sales Director,
NVIDIA
Jeremy Nightingale
President
Macnica Americas, Inc.

Video: Insight into Current Trends of IP Production & Cloud Integration

When we look at the parts of our workflows that work well, we usually find standards underneath. SDI is pretty much a solved problem and has been delivering video since before the 90s, albeit with better reliability as time has gone on. MPEG Transport Streams are another great example of a standard that has achieved widespread interoperability. These are just two examples given by John Mailhot from Imagine Communications as he outlines the standards which have built the broadcast industry to what it is today, or perhaps to what it was in 2005. By looking at past successes, John seeks to describe the work that the industry should be doing now and into the future as technology and workflows evolve at a pace.

John’s point is that in the past we had some wildly successful standards in video and video transport. For logging, we relied on IT-based standards like SNMP and Syslog and for control protocols, the wild west was still in force with some defacto standards such as Probel’s SW-P-08 router protocol and the TSL UMD protocol dominating their niches.

 

 

The industry is now undergoing a number of transformations simultaneously. We are adopting IP-based transport both compressed and uncompressed (though John quickly points out SDI is still perfectly viable for many). We are moving many workloads to the cloud and we are slowly starting to up our supported resolutions along with moving some production to HDR. All of this work, to be successful should be based on standards, John says. And there are successes in there such as AMWA’s NMOS specifications which are the first multi-vendor, industry-wide control protocol. Technically it is not a standard, but in this case, the effect is close to the same. John feels that the growth of our industry depends on us standardising more control protocols in the future.

John spends some time looking at how the move to IP, UHD, HDR and Cloud have played into the Live Production and Linear Playout parts of the broadcast chain. Live production, as we’ve heard previously is starting to embrace IP now, lagging playout deployments. Whereas playout usually lags production in UHD and HDR support since it’s more important to acquire video now in UHD & HDR even if you can’t transmit it to maximise its long-term value.

John finishes by pointing out that Moore’s law’s continued may not be so clear in CPUs but it’s certainly in effect within optics and network switches and routers. Over the last decade, switches have gone from 10 gig to 50 to 100 and now to 400 gig. This long term cost reduction should be baked into the long-term planning for companies embarking on an IP transformation project.

Watch now!
Speaker

John Mailhot John Mailhot
CTO,
Imagine Communications

Video: How to Deploy an IP-Based Infrastructure

An industry-wide move to any new technology takes time and there is a steady flow of people new to the technology. This video is a launchpad for anyone just coming into IP infrastructures whether because their company is starting or completing an IP project or because people are starting to ask the question “Should we go IP too?”.

Keycode Media’s Steve Dupaix starts with an overview of how SMPTE’s suite of standards called ST 2110 differs from other IP-based video and audio technologies such as NDI, SRT, RIST and Dante. The key takeaways are that NDI provides compressed video with a low delay of around 100ms with a suite of free tools to help you get started. SRT and RIST are similar technologies that are usually used to get AVC or HEVC video from A to B getting around packet loss, something that NDI and ST 2110 don’t protect for without FEC. This is because SRT and RIST are aimed at moving data over lossy networks like the internet. Find out more about SRT in this SMPTE video. For more on NDI, this video from SMPTE and VizRT gives the detail.

 

 

ST 2110’s purpose is to get high quality, usually lossless, video and audio around a local area network originally being envisaged as a way of displacing baseband SDI and was specced to work flawlessly in live production such as a studio. It brings with it some advantages such as separating the essences i.e. video, audio, timing and ancillary data are separate streams. It also brings the promise of higher density for routing operations, lower-cost infrastructure since the routers and switches are standard IT products and increased flexibility due to the much-reduced need to move/add cables.

Robert Erickson from Grass Valley explains that they have worked hard to move all of their product lines to ‘native IP’ as they believe all workflows will move IP whether on-premise or in the cloud. The next step, he sees is enabling more workflows that move video in and out of the cloud and for that, they need to move to JPEG XS which can be carried in ST 2110-20. Thomas Edwards from AWS adds their perspective agreeing that customers are increasingly using JPEG XS for this purpose but within the cloud, they expect the new CDI which is a specification for moving high-bandwidth traffic like 2110-20 streams of uncompressed video from point to point within the cloud.

John Mailhot from Imagine Communications is also the chair of the VSF activity group for ground-cloud-cloud-ground. This aims to harmonise the ways in which vendors provide movement of media, whatever bandwidth, into and out of the cloud as well as from point to point within. From the Imagine side, he says that ST 2110 is now embedded in all products but the key is to choose the most appropriate transport. In the cloud, CDI is often the most appropriate transport within AWS and he agrees that JPEG XS is the most appropriate for cloud<->ground operations.

The panel takes a moment to look at the way that the pandemic has impacted the use of video over IP. As we heard earlier this year, the New York Times had been waiting before their move to IP and the pandemic forced them to look at the market earlier than planned. When they looked, they found the products which they needed and moved to a full IP workflow. So this has been the theme and if anything has driven, and will continue to drive, innovation. The immediate need provided the motivation to consider new workflows and now that the workflow is IP, it’s quicker, cheaper and easier to test new variation. Thomas Edwards points out that many of the current workflows are heavily reliant on AVC or HEVC despite the desire to use JPEG XS for the broadcast content. For people at home, JPEG XS bandwidths aren’t practical but RIST with AVC works fine for most applications.

Interoperability between vendors has long been the focus of the industry for ST 2110 and, in John’s option, is now pretty reliable for inter-vendor essence exchanges. Recently the focus has been on doing the same with NMOS which both he and Robert report is working well from recent, multi-vendor projects they have been involved in. John’s interest is working out ways that the cloud and ground can find out about each other which isn’t a use case yet covered in AMWA’s NMOS IS-04.

The video ends with a Q&A covering the following:

  • Where to start in your transition to IP
  • What to look for in an ST 2110-capable switch
  • Multi-Level routing support
  • Using multicast in AWS
  • Whether IT equipment lifecycles conflict with Broadcast refresh cycles
  • Watch now!
    Speakers

    John Mailhot John Mailhot
    CTO & Director of Product Management, Infrastructure & Networking,
    Imagine Communications
    Ciro Noronha Ciro Noronha
    Executive Vice-President of Engineering,
    Cobalt Digital
    Thomas Edwards Thomas Edwards
    Principal Solutions Architect & Evangelist,
    Amazon Web Services
    Robert Erickson Robert Erickson
    Strategic Account Manager Sports and Venues,
    Grass Valley
    Steve Dupaix Steve Dupaix
    Senior Account Executive,
    Key Code Media

    Video: Live Production Forecast: Cloudy for the Foreseeable Future

    Our ability to work remotely during the pandemic is thanks to the hard work of many people who have developed the technologies which have made it possible. Even before the pandemic struck, this work was still on-going and gaining momentum to overcome more challenges and more hurdles of working in IP both within the broadcast facility and in the cloud.

    SMPTE’s Paul Briscoe moderates the discussion surrounding these on-going efforts to make the cloud a better place for broadcasters in this series of presentation from the SMPTE Toronto section. First in the order is Peter Wharton from TAG V.S. talking about ways to innovate workflows to better suit the cloud.

    Peter first outlines the challenges of live cloud production, namely keeping latency low, signal quality high and managing the high bandwidths needed at the same time as keeping a handle on the costs. There is an increasing number of cloud-native solutions but how many are truly innovating? Don’t just move workflows into the cloud, advocates Peter, rather take this opportunity to embrace the cloud.

    Working with the cloud will be built on new transport interfaces like RIST and SRT using a modular and open architecture. Scalability is the name of the game for ‘the cloud’ but the real trick is in building your workflows and technology so that you can scale during a live event.

    Source: TAG V.S.

    There are still obstacles to be overcome. Bandwidth for uncompressed video is one, with typical signals up to 3Gbps uncompressed which then drives very high data transfer costs. The lack of PTP in the cloud makes ST 2110 workflows difficult, similarly the lack of multicast.

    Tackling bandwidth, Peter looks at the low-latency ways to compress video such as NDI, NDI|HX, JPEG XS and Amazon’s lossless CDI. Peter talks us through some of the considerations in choosing the right codec for the task in hand.

    Finishing his talk, Peter asks if this isn’t time for a radical change. Why not rethink the entire process and embrace latency? Peter gives an example of a colour grading workflow which has been able to switch from on-prem colour grading on very high-spec computers to running this same, incredibly intensive process in the cloud. The company’s able to spin up thousands of CPUs in the cloud and use spot pricing to create temporary, low cost, extremely powerful computers. This has brought waiting times down for jobs to be processed significantly and has reduced the cost of processing an order of magnitude.

    Lastly Peter looks further to the future examining how saturating the stadium with cameras could change the way we operate cameras. With 360-degree coverage of the stadium, the position of the camera can be changed virtually by AI allowing camera operators to be remote from the stadium. There is already work to develop this from Canon and Intel. Whilst this may not be able to replace all camera operators, sports is the home of bleeding-edge technology. How long can it resist the technology to create any camera angle?

    Source: intoPIX

    Jean-Baptiste Lorent is next from intoPIX to explain what JPEG XS is. A new, ultra-low-latency, codec it meets the challenges of the industry’s move to IP, its increasing desire to move data rather than people and the continuing trend of COTS servers and cloud infrastructure to be part of the real-time production chain.

    As Peter covered, uncompressed data rates are very high. The Tokyo Olympics will be filmed in 8K which racks up close to 80Gbps for 120fps footage. So with JPEG XS standing for Xtra Small and Xtra Speed, it’s no surprise that this new ISO standard is being leant on to help.

    Tested as visually lossless to 7 or more encode generations and with latency only a few lines of video, JPEG XS works well in multi-stage live workflows. Jean-Baptiste explains that it’s low complexity and can work well on FPGAs and on CPUs.

    JPEG XS can support up to 16-bit values, any chroma and any colour space. It’s been standardised to be carried in MPEG TSes, in SMPTE ST 2110 as 2110-22, over RTP (pending) within HEIF file containers and more. Worst case bitrates are 200Mbps for 1080i, 390Mbps for 1080p60 and 1.4Gbps for 2160p60.

    Evolution of Standards-Based IP Workflows Ground-To-Cloud

    Last in the presentations is John Mailhot from Imagine Communications and also co-chair of an activity group at the VSF working on standardising interfaces for passing media place to place. Within the data plane, it would be better to avoid vendors repeatedly writing similar drivers. Between ground and cloud, how do we standardise video arriving and the data you need around that. Similarly standardising new technologies like Amazon’s CDI is important.

    John outlines the aim of having an interoperability point within the cloud above the low-level data transfer, closer to 7 than to 1 in the OSI model. This work is being done within AIMS, VSF, SMPTE and other organisations based on existing technologies.

    Q&A
    The video finishes with a Q&A and includes comments from AWS’s Evan Statton whose talk on CDI that evening is not part of this video. The questions cover comparing NDI with JPEG XS, how CDI uses networking to achieve high bandwidths and high reliability, the balance between minimising network and minimising CPU depending on workflow, the increasingly agile nature of broadcast infrastructure, the need for PTP in the cloud plus the pros and cons of standards versus specifications.

    Watch now!
    Speakers

    Peter Wharton Peter Wharton
    Director Corporate Strategy, TAG V.S.
    President, Happy Robotz
    Vice President of Membership, SMPTE
    Jean-Baptiste Lorent Jean-Baptiste Lorent
    Director Marketing & Sales,
    intoPIX
    John Mailhot John Mailhot
    Co-Chair Cloud-Gounrd-Cloud-Ground Activity Group, VSF
    Directory & NMOS Steering Member, AMWA
    Systems Architect for IP Convergence, Imagine Communcations
    Paul Briscoe Moderator: Paul Briscoe
    Canadian Regional Governor, SMPTE
    Consultant, Televisionary Consulting
    Evan Statton Evan Statton
    Principal Architect, Media & Entertainment
    Amazon Web Services