Video: PTP/ST 2059 Best Practices developed from PTP deployments and experiences

PTP is foundational for SMPTE ST 2110 systems. It provides the accurate timing needed to make the most out of almost zero-latency professional video systems. In the strictest sense, some ST 2110 workflows can work without PTP where they’re not combining signals, but for live production, this is almost never the case. This is why a lot of time and effort goes into getting PTP right from the outset because making it work perfectly from the outset gives you the bedrock on which to build your most valuable infrastructure upon.

In this video, Gerard Phillips from Arista, Leigh Whitcomb from Imagine Communications and Telestream’s Mike Waidson join forces to run down their top 15 best practices of building a PTP infrastructure you can rely on.

Gerard kicks off underlining the importance of PTP but with the reassuring message that if you ‘bake it in’ to your underlying network, with PTP-aware equipment that can support the scale you need, you’ll have the timing system you need. Thinking of scale is important as PTP is a bi-directional protocol. That is, it’s not like the black and burst and TLS that it replaces which are simply waterfall signals. Each endpoint needs to speak to a clock so understanding how many devices you’ll be having and where is important to consider. For a look a look at PTP itself, rather than best practices, have a look at this talk free registration required or this video with Meinberg.

 

 

Gerard’s best practices advice continues as he recommends using a routed network meaning having multiple layer 2 networks with layer 3 routing between This reduces the broadcast domain size which, in turn, increases stability and resilience. JT-NM TR-1001 can help to assist in deployments using this network architecture. Gerard next cautions about layer 2 IGMP snoopers and queriers which should exist on every VLAN. As the multicast traffic is flooded to the snooping querier in layer 2, it’s important to consider traffic flows.

When Gerard says PTP should be ‘baked in’, it’s partly boundary clocks he’s referring to. Use them ‘everywhere you can’ is the advice as they bring simplicity to your design and allow for easier debugging. Part of the simplicity they bring is in helping the scalability as they shed load from your GM, taking the brunt of the bi-directional traffic and can reduce load on the endpoints.

It’s long been known that audio devices, for instance, older versions of Dante before v4.2, use version one of PTP which isn’t compatible with SPMTE ST 2059’s requirement to use PTP v2. Gerard says that, if necessary, you should buy a version 1 to version 2 converter from your audio vendor to join the v1 island to your v2 infrastructure. This is linked to best practice point 6; All GMs must have the same time. Mike makes the point that all GMs should be locked to GPS and that if you have multiple sites, they should all have an active, GPS-locked GM even if they do send PTP to each other over a WAN as that is likely to deliver less accurate timing even if it is useful as a backup.

Even if you are using physically separate networks for your PTP and ST 2110 main and backup networks, it’s important to have a link between the two GMs for ST 2022-7 traffic so a link between the two networks just for PTP traffic should be established.

The next 3 points of advice are about the ongoing stability of the network. Firstly, ST 2059-2 specifies the use of TLV messages as part of a mechanism for media notes to generate drop-frame timecode. Whilst this may not be needed day 1, if you have it running and show your PTP system works well with it on, there shouldn’t be any surprises in a couple of years when you need to introduce an end-point that will use it. Similarly, the advice is to give your PTP domain a number which isn’t a SMPTE or AES default for the sole reason that if you ever have a device join your network which hasn’t been fully configured, if it’s still on defaults it will join your PTP domain and could disrupt it. If, part of the configuration of a new endpoint is changing the domain number, the chances of this are notably reduced. One example of a configuration item which could affect the network is ‘ptp role master’ which will stop a boundary clock from taking part in BCMA and prevents unauthorised end-points taking over.

Gerard lays out the ways in which to do ‘proper commissioning’ which is the way you can verify, at the beginning, that your PTP network is working well-meaning you have designed and built your system correctly. Unfortunately, PTP can appear to be working properly when in reality it is not for reasons of design, the way your devices are acting, configuration or simply due to bugs. To account for this, Gerard advocates separate checklists for GM switches and media nodes with a list of items to check…and this will be a long list. Commissioning should include monitoring the PTP traffic, and taking a packet capture, for a couple of days for analysis with test and measurement gear or simply Wireshark.

Leigh finishes up the video talking about verifying functionality during redundancy switches and on power-up. Commissioning is your chance to characterise the behaviour of the system in these transitory states and to observe how equipment attached is affected. His last point before summarising is to implement a PTP monitoring solution to capture the critical parameters and to detect changes in the system. SMPTE RP 2059-15 will define parameters to monitor, with the aim that monitoring across vendors will provide some sort of consistent metrics. Also, a new version of IEEE-1588, version 2.1, will add monitoring features that should aid in actively monitoring the timing in your ST 2110 system.

This Arista white paper contains further detail on many of these best practices.

Watch now!
Speakers

Gerard Phillips Gerard Phillips
Solutions Engineer,
Arista
Leigh Whitcomb Leigh Whitcomb
Principal Engineer.
Imagine
Michael Waidson Mike Waidson
Application Engineer,
Telestream

Video: Keeping Time with PTP

Different from his talk of the same name we covered last week, Mike Waidson from Telestream explains the fundamentals of PTP joined by Leigh Whitcomb from Imagine Communications and Robert Welch from Arista. Very few PTP talks include a live BCMA quiz plus, with more time than the IP Showcase talks, this is a well-paced, deep look into the basics.

Mike starts by reviewing how the measurement of time has been more and more accurately measured with us now, typically using atomic clocks. In the TV-domain analogue video used signals for B&B which gave frequency information in the subcarrier and allowed frequency locking and to keep in sync with other signals. NTP has allowed computers and routers on IP networks to keep lock allowing sub-millisecond synchronisation over LANs. Now we have IEEE 1588 PTP which harnesses hardware for maximum precision providing sub-microsecond precision.

Traditionally an SPG would create many different synchronising signals, distributed by DAs. With PTP however, the idea is creating a single time signal on to the network (as well as older signals if necessary). Although, the important thing to remember is that PTP both sends and receives data from the endpoints. GPS is made from 31 active satellites of which only 4 are needed for a lock. But other systems such as the Russian GLONASS, the Chinese BAIDU Navigational system or the European Galileo can also be used, sometimes in conjunction with each other to improve locking speed or give resilience.

Mike and his co-hosts give an overview of the standards that make all this possible, starting with the PTP standard itself IEEE 1588-2019 which is added to by SMPTE 2059. The latter is two standards that, together ensure broadcast devices can usefully harness PTP which is a general, cross-industry standard and track all signals back to a single point in time in 1970. Whilst this may seem extreme, the benefit of doing this is that if we know that all possible types of signal were in-phase at this one point in time, we can extrapolate how each signal should be phased now and use that information to synchronise the system. Upcoming to PTP, we hear, are standardised ways to monitor PTP plus additional security around the standard.

The next section looks at the types of Grandmaster and the fact that each clock works in its own domain. Typically, all your system will be in the same domain, but if you have incompatible situations such as older Dante networks or if you want to have a testing environment, you can use domains to separate your equipment. The standard, as defined by SMPTE 2059 is 127.

Mike then looks at the different types of PTP Message types: Announce, Sync & Follow up, Delay Request, Delay Response and Management Messages (broadcast information, drop second, time zone etc.) He then brings some of these up in Wireshark and talks us through the structure and what can be found within.

The most original part of the talk is the live walkthrough of three different scenarios where Leigh and Robert talk through their thinking on which clock will be the grandmaster and for what reason. This comes down to their understanding of the order of precedence of the metrics such as the manually-allotted priority, then the class of clock, clock accuracy and other values. One value worth remembering is that if your clock is locked to GPS it will have a class of 6, but if it then loses lock, it will become 7.

PTP talks are not complete without an explanation of the sync message exchanges needed to actually determine the time (and the relative delays in order to compute it) as well as the secondary clock types, boundary and transparent. Boundary clocks take on much of the two-way traffic in PTP protecting the grandmasters from having to speak directly to all the, potentially, thousands of devices. Transparent switches, simply update the time announcements with the delay for the message to move through the switch. Whilst this is useful in keeping the timing accurate, it provides no protection for the grandmasters.

Before the talk finishes with a Q&A, the team finish by explaining the difference between operating in unicast and multicast, prioritising PTP traffic using the differentiated services protocol and adding redundancy to the PTP system.

Watch now!
Free registration required
Speakers

Robert Welch Robert Welch
Technical Solultions Lead,
Arista
Leigh Whitcomb Leigh Whitcomb
Principal Engineer.
Imagine
Michael Waidson Mike Waidson
Application Engineer,
Telestream

Video: How to Successfully Commission a SMPTE ST 2059/PTP System

PTP is the beating heart behind video- and audio-over-IP installations. As critical as black and burst reference, it pays to get it right. But PTP is a system, not a monolithic signal distributed around the facility. Unlike genlock, it’s a two-way conversation over networked infrastructure and whilst that brings great benefits, it changes how we deal with it. The system should be monitored, both at the ST 2059 layer and network layer. But before we even get to that point, implementation requires care particularly as the industry is still in the early phases of developing tools and best practices for project deployments.

Leigh Whitcomb from Imagine Communications has stepped up to bring us his experiences and best practices as part of the Broadcast Engineering and IT Conference at NAB. This talk assumes an existing level of knowledge of PTP. If you would like to start at the beginning, then please look at this talk from Meinberg and this from Tektronix.

Leigh starts by explaining that, typically, the best architecture is to have a red and a blue network. A grand master would then be on both networks and both would be set to lock to GPS. He explains how do deal with prioritisation and preventing other devices from becoming grand masters. He also explains some of the basic PTP parameter values such as setting the Announcement time outs. Other good design practices he discusses are where to use Boundary Clocks, avoiding PTP Domain numbers of 0 and 127 plus using QoS and DSCP.

As part of the commissioning piece, Leigh goes through some frequently-seen problems such as locking up slowly due to an incorrect Delay Request setting or the Grand Master announce rate being the same as the timeout. To understand when your system isn’t working properly, Leigh makes the point that it’s vital to understand in detail how you expect the system to behave. Use checklists to ensure all parameters and configuration have been applied correctly but also to verify the PTP packets themselves leaving the GM. Leigh then highlights checklists for other parts of the network such as the switches and Media Nodes.

There are a number of tools available for faultfinding and checking compliance. As part of commissioning, the first port of call is the device’s GUI and API which will obviously give most of the parameters needed but often will go further and help with fault finding. WireShark can help verifying the fields in the packets, the timing and message rates. Whilst Meinberg’s Track Hound is a free program which allows you to verify the PTP protocol and Grand Masters. The EBU List project also covers PTP/ST 2059. Helpfully, Leigh talks through how to use Wireshark to verify fields and message rates.

In terms of Testing, Leigh suggests running a packet capture (PCap) for 48 hours after commissioning to verify any issues. He then highlights the need for redundancy testing. This is where understanding how you intend the network to work is important as redundancy testing should also be combined with network testing where you deliberately pull down part of your network and see the GMs change as intended. This changeover will be managed by the Best Master Clock Algorithm (BMCA). When troubleshooting, you should use your monitoring system to help you visualise what’s happening. A good system should enable you to see the devices on the network and their status. Many companies would want to test how successfully the system recovers from a full failure as this will represent the maximum traffic load on the PTP system.

How to watch
1) Click on ‘Add to favourites’
2) Register for free – or log in if you are already part of NAB Express

3) You will then see the video on the left of the screen.

Watch now!
Speakers

Leigh Whitcomb Leigh Whitcomb
Architect,
Imagine Communications

Video: Deep Dive into SMPTE ST 2110-30, 31 & AES 67 Audio

Despite the title, a relatively light and short video for the weekend from NAB on using audio in 2110.

Why is there a separate SMPTE ST 2110-30 standard from AES67? Are AES67 devices compatible with SMPTE ST 2110-30? Why is there a SMPTE ST 2110-31 standard? This presentation from Leigh Whitcomb (Architect, Imagine Communications) is a deep dive into the SMPTE ST 2110-30, 31 and AES67 audio and will answer all these questions.

Watch Now!