Video: CPAC Case Study – Replacement of a CWDM System with an IP System

For a long time now, broadcasters have been using dark fibre and CWDM (Coarse Wavelength Division Multiplexing) for transmission of multiple SDI feeds to and from remote sites. As an analogue process, WDM is based on a concept called Frequency Division Multiplexing (FDM). The bandwidth of a fibre is divided into multiple channels and each channel occupies a part of the large frequency spectrum. Each channel operates at a different frequency and at a different optical wavelength. All these wavelengths (i.e., colours) of laser light are combined and de-combined using a passive prism and optical filters.

In this presentation Roy Folkman from Embrionix shows what advantages can be achieved by moving from CWDM technology to real-time media-over-IP system. The recent project for CPAC (Cable Public Affairs Channel) in Canada has been used as an example. The scope of this project was to replace an aging CWDM system connecting government buildings and CPAC Studios which could carry 8 SDI signals in each direction with a single dark fibre pair. The first idea was to use a newer CWDM system which would allow up to 18 SDI signals, but quite quickly it became apparent that an IP system could be implemented at similar cost.

As this was an SDI replacement, SMPTE ST 2022-6 was used in this project with a upgrade path to ST 2110 possible. Roy explains that, from CPAC point of view, using ST 2022-6 was a comfortable first step into real-time media-over-IP which allowed for cost reduction and simplification (no PTP generation and distribution required, re-use of existing SDI frame syncs and routing with audio breakaway capability). The benefits of using IP were: increased capacity, integrated routing (in-band control) and ease of future expansion.

A single 1RU 48-port switch on each side and a single dark fibre pair gave the system a capacity of 48 HD SDI signals in each direction. SFP gateways with small Embronix enclosures have been used to convert SDI outs of cameras to IP fibre – that also allowed to extend the distance between the cameras and the switch above SDI cabling limit of 100 meters. SFP gateway modules converting IP to SDI have been installed directly in the switches in both sites.

Roy finishes his presentation with possible future expansion of the system, such as migration to ST 2110 (firmware upgrade for SFP modules), increased capacity (by adding additional dark fibres ands switches), SDI and IP routing integration with unified control system (NMOS), remote camera control and addition of processing functions to SFP modules (Multiviewers, Up/Down/CrossConversion, Compression).

Watch now!

Download the slides.

Speaker

Roy Folkman 
VP of Sales
Embrionix

Video: Where can SMPTE 2110 and NDI co-exist?

When are two video formats better than one? Broadcasters have long sought ‘best of breed’ systems matching equipment as close as possible to your ideal workflow. In this talk, we look getting the best of both compressed, low-latency and uncompressed video. NDI, a lightly compressed, ultra-low latency codec, allows full productions in visually lossless video with a field of latency. SMPTE’s ST-2110 allows full productions with uncompressed video and almost zero latency.

Bringing together the EBU’s Willem Vermost who paints a picture from the perspective of public broadcasters who are planning their moves into the IP realm, Marc Risby from UK distributor and integrator Boxer brings a more general view of the market’s interest and Will Waters who spent many years in Newtek, the company that invented NDI we hear the two approaches of compressed and uncompressed complement each other.

This panel took place just after the announcement that Newtek had been bought by VizRT, the graphics vendor, who sees a lot of benefit in being able to work in both types of workflow, for clients large and small and who have made Newtek its own entity under the VizRT umbrella to ensure continued focus.

A key differentiator of NDI is its focus on 1 gigabit networking. Its aim has always to enable ‘normal’ companies to be able to deploy IP video easily so they can rapidly benefit from the benefits that IP workflows bring over SDI or other baseband video technologies. A keystone in this strategy is to enable everything to happen on normal, 1Gbit switches which are prevalent in most companies today. Other key elements to the codec are: free, software development kit, bi-directionality, resolution-independent, audio sample-rate agnostic, tally support, auto-discovery and more.

In the talk, we discuss the pros and cons of this approach where interoperability is assured as everyone has to use the same receive and transmit code, against having a standard such as SMPTE ST-2110. SMPTE ST-2110 has the benefit of being uncompressed, assuring the broadcaster that they have captured the best possible quality of video, promises better management at scale, tighter integration into complex workflows, lower latency and the ability to treat the many different essences separately. Whilst we discuss many of the benefits of SMPTE ST-2110, you can get a more detailed overview from this presentation from the IP Showcase.

Watch now!

This panel was produced by IET Media, a technical network within the IET which runs events, talks and webinars for networking and education within the broadcast industry. More information

Speakers

Willem Vermost Willem Vermost
At the time, Senior IP Media Technology Architect, EBU
Now, Design and Engineering Manager, VRT
Marc Risby Marc Risby
CTO,
Boxer Group
Will Walters Will Waters
Formerly Vice President Of Worldwide Customer Success,
Now Head of Global Product Management,
VizRT
Russell Trafford-Jones Moderator: Russell Trafford-Jones
Exec Member, IET Media
Manager, Support & Services, Techex
Editor, The Broadcast Knowledge

Video: JPEG XS in Action for IP Production

JPEG XS is a new intra-frame compression standard delivering JPEG 2000 quality with 1000x lower latency – microseconds instead of milliseconds. This codec provides relatively low bandwidth (visually lossless compression at ratio of 10:1) with very-low and fixed latency, which makes it ideal for remote production of live events.

In this video Andy Rayner from Nevion shows how JPEG XS fits in all-IP broadcast technology with SMPTE ST 2110-22 standard. Then he presents the world’s first full JPEG-XS deployment for live IP production created for a large sports broadcaster. It was designed for pan-European WAN operation and based on ST 2110 standard with ST 2022-7 protection.

Andy discusses challenges of IP to IP processing (ST 2110-20 to ST 2110-22 conversion) and shows how to keep video and audio in sync through the whole processing chain.

This presentation proves that JPEG-XS is working, low latency distributed production is possible and the value of the ST2110-22 addition to the 2110 suite.

You can see the slides here.

Watch now!

Speaker

Andy Rayner Andy Rayner
Chief Technologist
Nevion Ltd.

Webinar: How 5G Will Change Broadcast


5G is in key focus as we approach IBC and few are more invested in it than BT/EE in the UK. TVB Europe gives the platform to Matt Stagg from BT to explain what 5G means to them.

Date: 5th September, 15:00 BST
This webinar has been rescheduled from August.

Topics will include:

– How can 5G be used for remote production?
– What does network slicing mean for production process?
– What impact will 5G have on traditional pay-TV? Will it help operators find a bigger audience as they fight against the streaming services?
– Will 5G see consumers become more interested in virtual reality?
– Could 5G see the death of broadband?
– How far away is 6G?

Register now!

Speaker

Matt Stagg Matt Stagg
Director of Mobile Strategy,
BT Sport