Video: Benefits of IP Systems for Sporting Venues

As you walk around any exhibitions there seems to be a myriad of ‘benefits’ of IP working, many of which don’t resonate for particular use cases. Only the most extraordinary businesses need all of the benefits, so in this talk, Imagine Communication’s John Mailhot discusses how IP helps sports venues.

John sets the scene by separating out the function of OB trucks and the ‘inside production’ facilities which have a whole host of non-TV production to do including driving scoreboards, displays inside the venue, replays and importantly has to deal with over 250 events a year, not all of which will have an OB truck.

We see that the scale that IP can work at is a great benefit as many signals can fit down one fibre and 2022-7 seamless switching can easily provide full redundancy for every fibre and SFP. This is a level of redundancy which is simply not seen in SDI systems. With stadia being very large, necessitating cable runs of over 500m, the fact that IP needs fewer cables overall is a great benefit.

John shows an example of an Arista switch only 7U in height which provides 144x 100G ports meaning it could support over 4000 inputs and 4000 outputs. Such density is unprecedented and for OB trucks can be a dealbreaker. For sports venues, this can also be a big motivator but also allow more flexibility in distributing the solution rather than relying on a massive central interconnect with a 1100×1100 SDI router in a central CTA.

TV is nothing without audio and the benefits to audio in 2110 are non trivial since with the audio being split off from the video, we are no longer limited to dealing with just 16 channels per video and de-embedding from a video frame any time we want to touch it.

Timing is an interesting benefit. I say this because, whilst PTP can end up being quite complex compared to black and burst, it has some big benefits. First off, it can live in the same cables as your data where as black and burst requires a whole separate cable infrastructure. PTP also allows you to timestamp all essences which helps with lip-sync throughout your workflow.

John leads us through some examples of how this works for different areas finishing by summing up the relevant benefits such as scalability, multi-format, space efficient, and timing amongst others.

Watch now!
Download the slides
Speakers

John Mailhot John Mailhot
CTO, Networking & Infrastructure,
Imagine Communications

Video: DASH: from on-demand to large scale live for premium services

A bumper video here with 7 short talks from VideoLAN, Will Law and Hulu among others, all exploring the state of MPEG DASH today, the latest developments and the hot topics such as low latency, ad insertion, bandwidth prediction and one red-letter feature of DASH – multi-DRM.

The first 10 minutes sets the scene introducing the DASH Industry Forum (DASH IF) and explaining who takes part and what it does. Thomas Stockhammer, who is chair of the Interoperability Working Group explains that DASH IF is made of companies, headline members including Google, Ericsson, Comcast and Thomas’ employer Qualcomm who are working to promote the adoption of MPEG-DASH by working to improve the specification, advise on how to put it into practice in real life, promote interoperability, and being a liaison point for other standards bodies. The remaining talks in this video exemplify the work which is being done by the group to push the technology forward.

Meeting Live Broadcast Requirements – the latest on DASH low latency!
Akamai’s Will Law takes to the mic next to look at the continuing push to make low-latency streaming available as a mainstream option for services to use. Will Law has spoken about about low latency at Demuxed 2019 when he discussed the three main file-based to deliver low latency DASH, LHLS and LL-HLS as well as his famous ‘Chunky Monkey’ talk where he explains how CMAF, an implementation of MPEG-DASH, works in light-hearted detail.

In today’s talk, Will sets out what ‘low latency’ is and revises how CMAF allows latencies of below 10 seconds to be achieved. A lot of people focus on the duration of the chunks in reducing latency and while it’s true that it’s hard to get low latency with 10-second chunk sizes, Will puts much more emphasis on the player buffer rather than the chunk size themselves in producing a low-latency stream. This is because even when you have very small chunk sizes, choosing when to start playing (immediately or waiting for the next chunk) can be an important part of keeping the latency down between live and your playback position. A common technique to manage that latency is to slightly increase and decrease playback speed in order to manage the gap without, hopefully, without the viewer noticing.

Chunk-based streaming protocols like HLS make Adaptive Bitrate (ABR) relatively easy whereby the player monitors the download of each chunk. If the, say, 5-second chunk arrives within 0.25 seconds, it knows it could safely choose a higher-bitrate chunk next time. If, however, the chunk arrives in 4.8 seconds, it can choose to the next chunk to be lower-bitrate so as to receive the chunk with more headroom. With CMAF this is not easy to do since the segments all arrive in near real-time since the transferred files represent very small sections and are sent as soon as they are created. This problem is addressed in a later talk in this talk.

To finish off, Will talks about ‘Resync Elements’ which are a way of signalling mid-chunk IDRs. These help players find all the points which they can join a stream or switch bitrate which is important when some are not at the start of chunks. For live streams, these are noted in the manifest file which Will walks through on screen.

Ad Insertion in Live Content:Pre-, Mid- and Post-rolling
Whilst not always a hit with viewers, ads are important to many services in terms of generating the revenue needed to continue delivering content to viewers. In order to provide targeted ads, to ensure they are available and to ensure that there is a record of which ads were played when, the ad-serving infrastructure is complex. Hulu’s Zachary Cava walks us through the parts of the infrastructure that are defined within DASH such as exchanging information on ‘Ad Decision Parameters’ and ad metadata.

In chunked streams, ads are inserted at chunk boundaries. This presents challenges in terms of making sure that certain parameters are maintained during this swap which is given the general name of ‘Content Splice Conditioning.’ This conditioning can align the first segment aligned with the period start time, for example. Zachary lays out the three options provided for this splice conditioning before finishing his talk covering prepared content recommendations, ad metadata and tracking.

Bandwidth Prediction for Multi-bitrate Streaming at Low Latency
Next up is Comcast’s Ali C. Begen who follows on from Will Law’s talk to cover bandwidth prediction when operating at low-latency. As an example of the problem, let’s look at HTTP/1.1 which allows us to download a file before it’s finished being written. This allows us to receive a 10-second chunk as it’s being written which means we’ll receive it at the same rate the live video is being encoded. As a consequence, the time each chunk takes to arrive will be the same as the real-time chunk duration (in this example, 10 seconds.) When you are dealing with already-written chunks, your download time will be dependent on your bandwidth and therefore the time can be an indicator of whether your player should increase or decrease the bitrate of the stream it’s pulling. Getting back this indicator for low-latency streams is what Ali presents in this talk.

Based on this paper Ali co-authored with Christian Timmerer, he explains a way of looking at the idle time between consecutive chunks and using a sliding window to generate a bandwidth prediction.

Implementing DASH low latency in FFmpeg
Open-source developer Jean-Baptiste Kempf who is well known for his work on VLC discusses his work writing an MPEG-DASH implementation for FFmpeg called the DASH-LL. He explains how it works and who to use it with examples. You can copy and paste the examples from the pdf of his talk.

Managing multi-DRM with DASH
The final talk, ahead of Q&A is from NAGRA discussing the use of DRM within MPEG-DASH. MPEG-DASH uses Common Encryption (CENC) which allows the DASH protocol to use more than one DRM scheme and is typically seen to allow the use of ‘FairPlay’, ‘Widevine’ and ‘PlayReady’ encryption schemes on a single stream dependent on the OS of the receiver. There is complexity in having a single server which can talk to and negotiate signing licences with multiple DRM services which is the difficulty that Lauren Piron discusses in this final talk before the Q&A led by Ericsson’s VP of international standards, Per Fröjdh.

Watch now!
Speakers

Thomas Stockhammer Thomas Stockhammer
Director of Technical Standards,
Qualcomm
Will Law Will Law
Chief Architect,
Akamai
Zachary Cava Zachary Cava
Software Architect,
Hulu
Ali C. Begen Ali C. Begen
Technical Consultant, Video Architecture, Strategy and Technology group,
Comcast
Jean-Baptiste Kempf Jean-Baptiste Kempf
President & Lead VLC Developer
VideoLAN
Laurent Piron Laurent Piron
Principal Solution Architect
NAGRA
Per Fröjdh Moderator: Per Fröjdh
VP International Standards,
Ericsson

Video: IP Fundamentals For Broadcast Seminar IV

“When networking gets real”, perhaps, could have been the title of this last of 4 talks about IP for broadcast. This session wraps up a number of topics from the classic ‘TCP Vs. UDP’ discussion to IPv6 and examines the switches and networks that make up a network as well as the architecture options. Not only that, but we also look at VPNs and firewalls finishing by discussing some aspects of network security. When viewed with the previous three talks, this discusses many of the nuances from the topics already covered bringing in the relevance of ‘real world’ situations.

Wayne Pecena, President of SBE, starts by discussing subnets and collision domains. The issue with any NIC (Network Interface Controller) is that it’s not to know when someone else is talking on the wire (i.e. when another NIC is sending a message by changing the voltage of the wire). It’s important that NICs detect when other NICs are sending messages and seek to avoid sending while this is happening. If this does’t work out well, then two messages on the same wire are seen as a ‘collision’. It’s no surprise that collisions are to be avoided which is the starting point of Wayne’s discussion.

Moving from Layer 2 to Layer 4, Wayne pits TCP against UDP looking at the pros and cons of each protocol. Whilst this is no secret, as part of the previous talks this is just what’s needed to round the topic off ahead of talking about network architecture.

“Building and Securing a Segmented IP Network Infrastructure” is the title of the next talk which starts to deal with real-world problems when an engineer gets back from a training session and starts to actually specify a network herself. How should the routers and switches be interconnected to deliver the functionality required by the business and, as we shall see, which routers/switches are actually needed? Wayne discusses some of the considerations of purchasing switches (layer 2) and routers (layer 3 & 2) including the differing terms used by HP and Cisco before talking about how to assign IP addresses, also called an IP space. Wayne takes us through IP addressing plans, examples of what they would look like in excel along with a lot of the real-world thinking behind it.

Security is next on the list, not just in terms of ‘cybersecurity’ in the general sense but in terms of best practice, firewalls and VPNs. Wayne takes a good segment of time out to discus the different aspects of firewalls – how they work, ACLs (Access-control Lists), and port security amongst other topics before doing the same for VPNs (Virtual Private Networks) before making the point that a VPN and a firewall are not the same. A VPN allows you to extend a network out from a building to be in another – the typical example being from your work’s address into your home. Whilst a VPN is secured so that only certain people can extend the network, a firewall more generally acts to prevent anything coming into a network.

As an addendum to this talk, Wayne explains IPV4 depletion and how IPv6 addressing works. In practice, for broadcasters deploying within their company in the year 2020, IPv6 is unlikely to be a topic needed. However, for people who are distributing to homes and working closer with CDNs and ISPs, there is a chance that this information is more relevant on a day-to-day basis. Whilst IP address depletion is a real thing, since every company has a 10.x.x.x address space to play with, most companies use internal equipment with an IPv4 address plan.
Watch now!
Speaker

Wayne Pecena Wayne Pecena
Director of Engineering, KAMU TV/FM at Texas A&M University
President, Society of Broadcast Engineers AKA SBE

Video: Encoding and packaging for DVB-I services

There are many ways of achieving a hybrid of OTT-delivered and broadcast-delivered content, but they are not necessarily interoperable. DVB aims to solve the interoperability issue, along with the problem of service discovery with DVB-I. This specification was developed to bring linear TV over the internet up to the standard of traditional broadcast in terms of both video quality and user experience.

DVB-I supports any device with a suitable internet connection and media player, including TV sets, smartphones, tablets and media streaming devices. The medium itself can still be satellite, cable or DTT, but services are encapsulated in IP. Where both broadband and broadcast connections are available, devices can present an integrated list of services and content, combining both streamed and broadcast services.

DVB-I standard relies on three components developed separately within DVB: the low latency operation, multicast streaming and advanced service discovery. In this webinar, Rufael Mekuria from Unified Streaming focuses on low latency distributed workflow for encoding and packaging.

 

The process starts with an ABR (adaptive bit rate) encoder responsible for producing streams with multiple bit rates and clear segmentation – this allows clients to automatically choose the best video quality depending on available bandwidth. Next step is packaging where streaming manifests are added and content encryption is applied, then data is distributed through origin servers and CDNs.

Rufael explains that low latency mode is based on an enhancement to the DVB-DASH streaming specification known as DVB Bluebook A168. This incorporates the chunked transfer encoding of the MPEG CMAF (Common Media Application Format), developed to enable co-existence between the two principle flavors of adaptive bit rate streaming: HLS and DASH. Chunked transfer encoding is a compromise between segment size and encoding efficiency (shorter segments make it harder for encoders to work efficiently). The encoder splits the segments into groups of frames none of which requires a frame from a later group to enable decoding. The DASH packager then puts each group of frames into a CMAF chunk and pushes it to the CDN. DVB claims this approach can cut end-to-end stream latency from a typical 20-30 seconds down to 3-4 seconds.

The other topics covered are: encryption (exhanging key parameters using CPIX), content insertion, metadata, supplemental descriptors, TTML subitles and MPD proxy.

Watch now!

Download the slides.

Speaker

Rufael Mekuria Rufael Mekuria
Head of Research & Standardization
Unified Streaming