Video: A Frank Discussion of NMOS

What NMOS isn’t is almost as important as what NMOS actually is when it comes to defining a new project implementing SMPTE ST 2110. Written by AMWA, NMOS is a suite of open specifications which help control media flow hence the name: Network Media Open Specifications. Typically NMOS specifications are used alongside the ST 2110 standards but in this hype-free panel, we hear that 2110 isn’t the only application of NMOS.

AMWA Executive Director Brad Gilmer introduces this ‘frank’ panel with Imagine’s John Mailhot explaining the two meanings ‘NMOS’ has. The first is the name of the project we have just introduced in this article. The second is as shorthand for the two best-known specifications created by the project, IS-04 and IS-05. Together, these allow new devices to register their availability to the rest of the system and to receive instructions regarding sending media streams. There are plenty of other specifications which are explained in this talk of which two more are mentioned later in this video: IS-08 which manages audio channel mapping and IS-09 which allows new devices to get a global configuration to automatically find out facts like their PTP domain.

 

 

Security is “important and missing previously,” says Jed Deame from Nextera but explains that since NMOS is predominantly a specification for HTTP API calls, there is nothing to stop this from happening as HTTPS or another protocol as long as it provides both encryption and authorisation. The panel then explores the limits of the scope of NMOS. For security, its scope is to secure the NMOS control traffic, so doesn’t stretch to securing the media transport or, say, PTP. Furthermore, for NMOS as a whole, it’s important to remember it defines control and not more than control. Brad says, though, that even this scope is ambiguous as where does the concept of ‘control’ stop? Is a business management system control? What about scheduling of media? Triggering playback? There have to be limited.

Imagine Communications’ John Mailhot explores the idea of control asking how much automation, and hence NMOS-style control, can help realise one of the promises of IP which is to reduces costs by speeding up system changes. Previously, Brad and John explain, changing a studio from doing NFL to doing NHL may take up to a month of rewiring and reprogramming. Now that rewiring can be done in software, John contends that the main task is to make sure the NMOS is fully-fledged enough to allow interoperable enumeration, configuration and programming of links within the system. The current specifications are being reinforced by ‘modelling’ work whereby the internal logical blocks of equipment, say an RGB gain control, can be advertised to the network as a whole rather than simply advertising a single ‘black box’ like an encoder. Now it’s possible to explain what pre and post-processing is available.

Another important topic explored by NVIDIA’s Richard Hastie and Jeremy Nightingale from Macnica, is the use of NMOS specifications outside of ST 2110 installations. Richard says that NVIDIA is using NMOS in over 200 different locations. He emphasises its use for media whether that be HEVC, AV1 or 2110. As such, he envisages it being used by ‘Twitch streamers’ no doubt with the help of the 2110-over-WAN work which is ongoing to find ways to expose NMOS information over public networks. Jeremy’s interest is in IPMX for ProAV where ‘plug and play’ as well as security are two of the main features being designed into the package.

Lastly, there’s a call out to the tools available. Since NMOS is an open specification project, the tools are released as Open Source which companies being encouraged to use the codebase in products or for testing. Not only is there a reference client, but Sony and BBC have released an NMOS testing tool and EasyNMOS provides a containerised implementation of IS-04 and IS-05 for extremely quick deployments of the toolset.

Watch now!
Speakers

Brad Gilmer Brad Gilmer
Executive Director, Video Services Forum
Executive Director, Advanced Media Workflow Association (AMWA)
John Mailhot John Mailhot
CTO Networking & Infrastructure
Jed Deame Jed Deame
CEO,
Nextera Video
Richard Hastie Richard Hastie
Senior Sales Director,
NVIDIA
Jeremy Nightingale
President
Macnica Americas, Inc.

Video: Insight into Current Trends of IP Production & Cloud Integration

When we look at the parts of our workflows that work well, we usually find standards underneath. SDI is pretty much a solved problem and has been delivering video since before the 90s, albeit with better reliability as time has gone on. MPEG Transport Streams are another great example of a standard that has achieved widespread interoperability. These are just two examples given by John Mailhot from Imagine Communications as he outlines the standards which have built the broadcast industry to what it is today, or perhaps to what it was in 2005. By looking at past successes, John seeks to describe the work that the industry should be doing now and into the future as technology and workflows evolve at a pace.

John’s point is that in the past we had some wildly successful standards in video and video transport. For logging, we relied on IT-based standards like SNMP and Syslog and for control protocols, the wild west was still in force with some defacto standards such as Probel’s SW-P-08 router protocol and the TSL UMD protocol dominating their niches.

 

 

The industry is now undergoing a number of transformations simultaneously. We are adopting IP-based transport both compressed and uncompressed (though John quickly points out SDI is still perfectly viable for many). We are moving many workloads to the cloud and we are slowly starting to up our supported resolutions along with moving some production to HDR. All of this work, to be successful should be based on standards, John says. And there are successes in there such as AMWA’s NMOS specifications which are the first multi-vendor, industry-wide control protocol. Technically it is not a standard, but in this case, the effect is close to the same. John feels that the growth of our industry depends on us standardising more control protocols in the future.

John spends some time looking at how the move to IP, UHD, HDR and Cloud have played into the Live Production and Linear Playout parts of the broadcast chain. Live production, as we’ve heard previously is starting to embrace IP now, lagging playout deployments. Whereas playout usually lags production in UHD and HDR support since it’s more important to acquire video now in UHD & HDR even if you can’t transmit it to maximise its long-term value.

John finishes by pointing out that Moore’s law’s continued may not be so clear in CPUs but it’s certainly in effect within optics and network switches and routers. Over the last decade, switches have gone from 10 gig to 50 to 100 and now to 400 gig. This long term cost reduction should be baked into the long-term planning for companies embarking on an IP transformation project.

Watch now!
Speaker

John Mailhot John Mailhot
CTO,
Imagine Communications

Video: How to Deploy an IP-Based Infrastructure

An industry-wide move to any new technology takes time and there is a steady flow of people new to the technology. This video is a launchpad for anyone just coming into IP infrastructures whether because their company is starting or completing an IP project or because people are starting to ask the question “Should we go IP too?”.

Keycode Media’s Steve Dupaix starts with an overview of how SMPTE’s suite of standards called ST 2110 differs from other IP-based video and audio technologies such as NDI, SRT, RIST and Dante. The key takeaways are that NDI provides compressed video with a low delay of around 100ms with a suite of free tools to help you get started. SRT and RIST are similar technologies that are usually used to get AVC or HEVC video from A to B getting around packet loss, something that NDI and ST 2110 don’t protect for without FEC. This is because SRT and RIST are aimed at moving data over lossy networks like the internet. Find out more about SRT in this SMPTE video. For more on NDI, this video from SMPTE and VizRT gives the detail.

 

 

ST 2110’s purpose is to get high quality, usually lossless, video and audio around a local area network originally being envisaged as a way of displacing baseband SDI and was specced to work flawlessly in live production such as a studio. It brings with it some advantages such as separating the essences i.e. video, audio, timing and ancillary data are separate streams. It also brings the promise of higher density for routing operations, lower-cost infrastructure since the routers and switches are standard IT products and increased flexibility due to the much-reduced need to move/add cables.

Robert Erickson from Grass Valley explains that they have worked hard to move all of their product lines to ‘native IP’ as they believe all workflows will move IP whether on-premise or in the cloud. The next step, he sees is enabling more workflows that move video in and out of the cloud and for that, they need to move to JPEG XS which can be carried in ST 2110-20. Thomas Edwards from AWS adds their perspective agreeing that customers are increasingly using JPEG XS for this purpose but within the cloud, they expect the new CDI which is a specification for moving high-bandwidth traffic like 2110-20 streams of uncompressed video from point to point within the cloud.

John Mailhot from Imagine Communications is also the chair of the VSF activity group for ground-cloud-cloud-ground. This aims to harmonise the ways in which vendors provide movement of media, whatever bandwidth, into and out of the cloud as well as from point to point within. From the Imagine side, he says that ST 2110 is now embedded in all products but the key is to choose the most appropriate transport. In the cloud, CDI is often the most appropriate transport within AWS and he agrees that JPEG XS is the most appropriate for cloud<->ground operations.

The panel takes a moment to look at the way that the pandemic has impacted the use of video over IP. As we heard earlier this year, the New York Times had been waiting before their move to IP and the pandemic forced them to look at the market earlier than planned. When they looked, they found the products which they needed and moved to a full IP workflow. So this has been the theme and if anything has driven, and will continue to drive, innovation. The immediate need provided the motivation to consider new workflows and now that the workflow is IP, it’s quicker, cheaper and easier to test new variation. Thomas Edwards points out that many of the current workflows are heavily reliant on AVC or HEVC despite the desire to use JPEG XS for the broadcast content. For people at home, JPEG XS bandwidths aren’t practical but RIST with AVC works fine for most applications.

Interoperability between vendors has long been the focus of the industry for ST 2110 and, in John’s option, is now pretty reliable for inter-vendor essence exchanges. Recently the focus has been on doing the same with NMOS which both he and Robert report is working well from recent, multi-vendor projects they have been involved in. John’s interest is working out ways that the cloud and ground can find out about each other which isn’t a use case yet covered in AMWA’s NMOS IS-04.

The video ends with a Q&A covering the following:

  • Where to start in your transition to IP
  • What to look for in an ST 2110-capable switch
  • Multi-Level routing support
  • Using multicast in AWS
  • Whether IT equipment lifecycles conflict with Broadcast refresh cycles
  • Watch now!
    Speakers

    John Mailhot John Mailhot
    CTO & Director of Product Management, Infrastructure & Networking,
    Imagine Communications
    Ciro Noronha Ciro Noronha
    Executive Vice-President of Engineering,
    Cobalt Digital
    Thomas Edwards Thomas Edwards
    Principal Solutions Architect & Evangelist,
    Amazon Web Services
    Robert Erickson Robert Erickson
    Strategic Account Manager Sports and Venues,
    Grass Valley
    Steve Dupaix Steve Dupaix
    Senior Account Executive,
    Key Code Media

    Video: Cloud Services for Media and Entertainment – Processing, Playout and Distribution

    What are the options for moving your playout, processing and distribution into the cloud? What will the workflows look like and what are the options for implementing them? This video covers the basics, describes many of the functions available like subtitle generation and QC then leads you through to harnessing machine learning,

    SMPTE’s New York section has brought together Evan Statton and Liam Morrison from AWS, Alex Emmermann from Telestream, Chris Ziemer & Joe Ashba from Imagine Communications and Rick Phelps from Brklyn Media to share their knowledge on the topic. Rick kicks off proceedings with a look at the principles of moving to the cloud. He speaks about the need to prepare your media before the move by de-duplicating files, getting the structure and naming correct and checking your metadata is accurate. Whilst deduplicating data reduces your storage costs, another great way to do this is to store in IMF format. IMF, the Interoperable Media Format, is related to MXF and stores essences separately. By using pointers to the right media, new versions of files can re-use media from other files. This further helps reduce storage costs.

     

     

    Rick finishes by running through workflow examples covering INgest, Remote Editing using PCoIP, Playout and VoD before running through the pros and cons of Public, Private and Hybrid cloud.

    Next on the rosta are Chris & Joe outlining their approach to playout in the cloud. They summarise the context and zoom in to look at linear channels and their Versio product. An important aspect of bringing products to the cloud, explains Joe, is to ensure you optimise the product to take advantage of the cloud. Where a software solution on-prem will use servers running the storage, databases, proxy generation and the like, in the cloud you don’t want to simply set up EC2 instances to run these same services. Rather, you should move your database into AWS’s database service, use AWS storage and use a cloud-provided proxy service. This is when the value is maximised.

    Alex leads with his learnings about calculating the benefits of cloud deployment focussing on the costs surrounding your server. You have to calculate the costs of the router port it’s connected to and the rest of the network infrastructure. Power and aircon is easy to calculate but don’t forget, Alex says, about the costs of renting the space in a data centre and the problems you hit when you have to lease another cage because you have become full. Suddenly and extra server has led to a two-year lease on datacentre space. He concludes by outlining Telestream’s approach to delivering transcode. QC, playback and stream monitoring in their Telestream Cloud offering.

    Evan Statton talks about the reasons that AWS created CDI and they merged the encoding stages for DTH transmission and OTT into one step. These steps came from customers’ wishes to simplify cloud worksflows or match their on-prem experiences. JPEG-XS, for isntance, is there to ensure that ultra low-latency video can flow in and out of AWS with CDI allowing almost zero delay, uncompressed video to flow within the cloud. Evan then looks through a number of workflows: Playout, stadium connectivity, station entitlement and ATSC 3.0.

    Liam’s presenation on machine learning in the cloud is the last of this section meeting. Liam focuses he comments and demos on machine learning for video processing. He explains how ML fits into the Articifical Intelligence banner and looks to where the research sector is heading. Machine learning is well suited to the cloud because of the need to have big GPU-heavy servers to manage large datasets and high levels of compute. the G4 series of EC2 servers is singled out as the machine learning instances of choice.

    Liam shows demos of super resolution and frame interpolation the later being used to generate slow motion clips, increasing the framerate of videos, improving the smoothness of stop-motion animations and more. Bringing this together, he finishes by showing some 4K 60fps videos created from ancient black and white film clips.

    The extensive Q&A looks at a wide range of topics:
    The need for operational change management since however close you get the cloud workflows to match what your staff are used to, there will be issues adjusting to the differences.
    How to budget due to the ‘transactional’ nature of AWS cloud microservices
    Problems migrating TV infrastructure to the cloud
    How big the variables are between different workflow designs
    When designing cloud workflows, what are the main causes of latency? When fighting latency what are the trade-offs?
    How long ML models for upconverting or transcoding take finish training?

    Watch now!
    Speakers

    Liam Morrison Liam Morrison
    Principal Architect, Machine Learning,
    Amazon Web Services (AWS)
    Alex Emmermann Alex Emmermann
    Cloud Business Development,
    Telestream
    Joe Ashba Joe Ashba
    Senior Solutions Architect,
    Imagine Communications
    Chris Ziemer Chris Ziemer
    VP Strategic Accounts & Partnerships,
    Imagine Communications
    Rick Phelps Rick Phelps
    Founder,
    Brklyn Media
    Evan Statton Evan Statton
    Principal Architect,
    Amazon Web Services (AWS)
    Ed DeLauter Moderator: Ed DeLauter