Video: Using AMWA IS-06 for Flow Control on Professional Media Networks

In IP networks multicast flow subscription is usually based on a combination of IGMP (Internet Group Management Protocol) and PIM (Protocol Independent Multicast) protocols. While PIM allows for very efficient delivery of IP multicast data, it doesn’t provide bandwidth control or device authorisation.

To solve these issues on SMPTE ST 2110 professional media networks the NMOS IS-06 specification has been developed. It relies on a Software-Defined Networking, where traffic management application embedded in each single switch or router is replaced by a centralised Network Controller. This controller manages and monitors the whole network environment, making it bandwidth aware.

NMOS IS-06 specification provides a vendor agnostic Northbound interface from Network Controller to Broadcast Controller. IS-06 in conjunction with IS-04 (Discovery and Registration) and IS-05 (NMOS Device Connection Management) allows Broadcast Controller to automatically set up media flows between endpoints on the network, reserve bandwidth for flows and enforce network security. Broadcast Controller is also able to request network topology information from Network Controller, which can be used to create a user friendly graphic representation of the flows in the network.

In this presentation Rob Porter from Sony Europe explains the basics of NMOS IS-06, showing in details how setting up media flows with this specification fits into the IS-04 / IS-05 workflow. Rob emphasise that all AMWA NMOS specifications are completely open and available to anyone, allowing for interoperability between broadcast and network devices from different manufacturers.

The next speaker, Sachin Vishwarupe from Cisco Systems, focuses on the future works on IS-06, including provisioning feedback (such as insufficient bandwidth, no route available from sender to receiver or no management connectivity), flow statistics, security and grouping (similar to ”salvo” in SDI world).

There is also a discussion on extension of IS-06 specification for Network Address Translation (NAT), which would help to resolve problems caused by address conflicts e.g. when sharing resources between facilities.

You can find the slides here.

Watch now!

Speakers

Rob Porter Rob Porter
Project Manager – Advanced Technology Team
Sony Europe
Sachin Vishwarupe
Principal Engineer
Cisco Systems

Video: The Good and the Ugly – IP Studio Production Case Study

What’s implementing SMPTE ST-2110 like in real life? How would you design your network and what were the problems? In this case study Ammar Latif from Cisco Systems presents the architecture, best practices and lessons learned they gleaned in this live IP broadcast production facility project designed for a major US broadcaster. Based on SMPTE ST-2110 standard, it spanned five studios and two control rooms. The central part of this project was a dual Spine-Leaf IP fabric with bandwidth equivalent of a 10,000 x 10,000 HD SDI router with a fully non-blocking multicast architecture. The routing system was based on Grass Valley Convergent broadcast controller and a Cisco DCNM media controller.

As the project was commissioned in 2018, the AMWA IS-04 and IS-05 specifications providing an inter-operable mechanism for routing media around SMPTE 2110 network were not yet available. Multicast flow subscription was based on a combination of IGMP (Internet Group Management Protocol) and PIM (Protocol Independent Multicast) protocols. While PIM is very efficient and mature, it lacks the ability to use bandwidth as a parameter when setting up a flow path. Ammar explains how Non-Blocking Multicast (NBM) developed by Cisco brings bandwidth awareness to PIM by signalling a type of data (video, audio or metadata).

The talk continues by discussing PTP distribution & monitoring, SMPTE 2022-7 seamless protection switching and remote site production. Ammar also lets us see how the user interfaces on the Cisco DCNM media controller were designed which include a visualisation of multicast flow, network topology and link saturation of ports.

You can find the slides here.

Watch now!

Speaker

Ammar Latif
Principal Architect,
Cisco Systems

Video: Where can SMPTE 2110 and NDI co-exist?

When are two video formats better than one? Broadcasters have long sought ‘best of breed’ systems matching equipment as close as possible to your ideal workflow. In this talk, we look getting the best of both compressed, low-latency and uncompressed video. NDI, a lightly compressed, ultra-low latency codec, allows full productions in visually lossless video with a field of latency. SMPTE’s ST-2110 allows full productions with uncompressed video and almost zero latency.

Bringing together the EBU’s Willem Vermost who paints a picture from the perspective of public broadcasters who are planning their moves into the IP realm, Marc Risby from UK distributor and integrator Boxer brings a more general view of the market’s interest and Will Waters who spent many years in Newtek, the company that invented NDI we hear the two approaches of compressed and uncompressed complement each other.

This panel took place just after the announcement that Newtek had been bought by VizRT, the graphics vendor, who sees a lot of benefit in being able to work in both types of workflow, for clients large and small and who have made Newtek its own entity under the VizRT umbrella to ensure continued focus.

A key differentiator of NDI is its focus on 1 gigabit networking. Its aim has always to enable ‘normal’ companies to be able to deploy IP video easily so they can rapidly benefit from the benefits that IP workflows bring over SDI or other baseband video technologies. A keystone in this strategy is to enable everything to happen on normal, 1Gbit switches which are prevalent in most companies today. Other key elements to the codec are: free, software development kit, bi-directionality, resolution-independent, audio sample-rate agnostic, tally support, auto-discovery and more.

In the talk, we discuss the pros and cons of this approach where interoperability is assured as everyone has to use the same receive and transmit code, against having a standard such as SMPTE ST-2110. SMPTE ST-2110 has the benefit of being uncompressed, assuring the broadcaster that they have captured the best possible quality of video, promises better management at scale, tighter integration into complex workflows, lower latency and the ability to treat the many different essences separately. Whilst we discuss many of the benefits of SMPTE ST-2110, you can get a more detailed overview from this presentation from the IP Showcase.

Watch now!

This panel was produced by IET Media, a technical network within the IET which runs events, talks and webinars for networking and education within the broadcast industry. More information

Speakers

Willem Vermost Willem Vermost
At the time, Senior IP Media Technology Architect, EBU
Now, Design and Engineering Manager, VRT
Marc Risby Marc Risby
CTO,
Boxer Group
Will Walters Will Waters
Formerly Vice President Of Worldwide Customer Success,
Now Head of Global Product Management,
VizRT
Russell Trafford-Jones Moderator: Russell Trafford-Jones
Exec Member, IET Media
Manager, Support & Services, Techex
Editor, The Broadcast Knowledge

Video: Wide Area Facilities Interconnect with SMPTE ST 2110

Adoption of SMPTE’s 2110 suite of standards for transport of professional media is increasing with broadcasters increasingly choosing it for use within their broadcast facility. Andy Rayner takes the stage at SMPTE 2019 to discuss the work being undertaken to manage using ST 2110 between facilities. In order to do this, he looks at how to manage the data out of the facility, the potential use of JPEG-XS, timing and control.

Long established practices of using path protection and FEC are already catered for with ST 2022-7 for seamless path protection and ST 2022-5. New to 2110 is the ability to send the separate essences bundled together in a virtual trunk. This has the benefit of avoiding streams being split up during transport and hence potentially suffering different delays. It also helps with FEC efficiency and allows transport of other types of traffic.

Timing is key for ST 2110 which is why it natively uses Precision Timing Protocol, PTP which has been formalised for use in broadcast under ST 2059. Andy highlights the problem of reconciling timing at the far end but also the ‘missed opportunity’ that the timing will usually get regenerated therefore the time of media ingest is lost. This may change over the next year.

The creation of ST 2110-22 includes, for the first time, compressed media into ST 2110. Andy mentions that JPEG XS can be used – and is already being deployed. Control is the next topic with Andy focussing on the secure sharing of NMOS IS-04 & 05 between facilities covering registration, control and the security needed.

The talk ends with questions on FEC Latency, RIST and potential downsides of GRE trunking.

Watch now!
Speaker

Andy Rayner Andy Rayner
Chief Technologist,
Nevion