Video: 5G Technology

5G seems to offer so much, but there is a lot of nuance under the headlines. Which of the features will telcos actually provide? When will the spectrum become available? How will we cope with the new levels of complexity? Whilst for many 5G will simply ‘work’, when broadcasters look to use it for delivering programming, they need to look a few levels deeper.

In this wide-ranging video from the SMPTE Toronto Section, four speakers take us through the technologies at play and they ways they can be implemented to cut through the hype and help us understand what could actually be achieved, in time, using 5G technology.

Michael J Martin is first up who covers topics such as spectrum use, modulation, types of cells, beam forming and security. Regarding spectrum, Michael explains that 5G uses three frequency bands, the sub 1GHz spectrum that’s been in use for many years, a 3Ghz range and a millimetre range at 26Ghz.

“It’s going to be at least a decade until we get 5G as wonderful as 4G is today.”

Michael J Martin
Note that some countries already use other frequencies such as 1.8GHz which will also be available.The important issue is that the 26Ghz spectrum will typically not be available for over a year, so 5G roll-out starts in some of the existing bands or in the 3.4Ghz spectrum. A recurring theme in digital RF is the use of OFDM which has long been used by DVB and has been adopted by ATSC 3.0 as their modulation, too. OFDM allows different levels of robustness so you can optimise reach and bandwidth.

Michael highlights a problem faced in upgrading infrastructure to 5G, the amount of towers/sites and engineer availability. It’s simply going to take a long time to upgrade them all even in a small, dense environment. This will deal with the upgrade of existing large sites, but 5G provides also for smaller cells, (micro, pico and femto cells). These small cells are very important in delivering the millimetre wavelength part of the spectrum.

Network Slicing
Source: Michael J. Martin, MICAN Communications

We look at MIMO and beam forming next. MIMO is an important technology as it, effectively, collects reflected versions of the transmitted signals and processes them to create stronger reception. 5G uses MIMO in combination with beam forming where the transmitter itself electronically manipulates the transmitter array to focus the transmission and localise it to a specific receiver/number of receivers.

Lastly, Michael talks about Network Slicing which is possibly one of the most anticipated features of 5G by the broadcast community. The idea being that the broadcaster can reserve its own slice of spectrum so when sharing an environment with 30,000 other receivers, they will still have the bandwidth they need.

Our next speaker is Craig Snow from Huawei outlines how secondary networks can be created for companies for private use which, interestingly, partly uses separate frequencies from public network. Network slicing can be used to separate your enterprise 5G network into separate networks fro production, IT support etc. Craig then looks at the whole broadcast chain and shows where 5G can be used and we quickly see that there are many uses in live production as well as in distribution. This can also mean that remote production becomes more practical for some use cases.

Craig moves on to look at physical transmitter options showing a range of sub 1Kg transmitters, many of which have in-built Wi-Fi, and then shows how external microwave backhaul might look for a number of your buildings in a local area connecting back to a central tower.

Next is Sayan Sivanathan who works for Bell Mobility and goes in to more detail regarding the wider range of use cases for 5G. Starting by comparing it to 4G, highlighting the increased data rates, improved spectrum efficiency and connection density of devices, he paints a rosy picture of the future. All of these factors support use cases such as remote control and telemetry from automated vehicles (whether in industrial or public settings.)  Sayan then looks at the deployment status in the US, Europe and Korea. He shows the timeline for spectrum auction in Canada, talks through photos of  5G transmitters in the real world.

Global Mobile Data Traffic (Exabytes per month)
Source: Ericsson Mobility Report, Nov 2019

Finishing off today’s session is Tony Jones from MediaKind who focuses in on which 5G features are going to be useful for Media and Entertainment. One is ‘better video on mobile’. Tony picks up on a topic mentioned by Michael at the beginning of the video: processing at the edge. Edge processing, meaning having compute power at the closest point of the network to your end user allows you to deliver customised manifest and deal with rights management with minimal latency.

Tony explains how MediaKind worked with Intel and Ericsson to deliver 5G remote production for the 2018 US Open. 5G is often seen as a great way to make covering golf cheaper, more aesthetically pleasing and also quicker to rig.

The session ends with a Q&A

Watch now!
Speakers

Michael J Martin Michael J Martin
MICAN Communications
Blog: vividcomm.com
Tony Jones Tony Jones
Principal Technologist
MediaKind Global
Craig Snow Craig Snow
Enterprise Accounts Director,
Huawei
Sayan Sivanathan Sayan Sivanathan
Senior Manager – IoT, Smart Cities & 5G Business Development
Bell Mobility

Video: Case Study FIS Ski World Championship

There’s a lot to learn when it comes to implementing video over IP, so it’s healthy to stand back from the details and see a working system in use to understand how the theory becomes reality. There’s been a clear change in the tone of conversation at the IP Showcase over the years as we’ve shifted from ‘trust us, this could work’ to ‘this is what it looks like!’ That’s not to say there’s not plenty to be done, but this talk about an uncompressed 2110 remote production workflow is great example of how the benefits of IP are being realised by broadcasters.
Robert Erickson is with Grass Valley specialising in sports such as the FIS Alpine World Ski Championships which were in the city of Åre in Sweden some 600km from Stockholm where Sweden’s public broadcaster SVT is based. With 80 cameras at the championships to be remotely controlled over an uncompressed network, this was no small project. Robert explains the two locations were linked by a backbone of two 100Gbps circuits.

The principle behind SVT’s project was to implement a system which could be redeployed, wouldn’t alter the viewers’ experience and would reduce staff and equipment on site. Interestingly the director wanted to be on-site meaning that the production was then split between much of the staff being in Stockholm, which of course was where most of the equipment was, and Åre. The cameras were natively IP, so no converters were needed in the field.

Centralisation was the name of the game, based in Stockholm, producing an end-to-end IP chain. Network switching was provided by Arista which aggregated the feeds of the cameras and brought them to Stockholm where the CCUs were located. Robert highlights the benefits of this approach which include the use of COTS switches, scalability and indifference as to the circuits in use. We then have a look inside the DirectIP connection which is a 10gig ‘pipe’ carrying 2022-6 camera and return feeds along with control and talkback, replicating the functionality of a SMPTE fibre in IP.

To finish up, Robert talks about the return visions, including multivewers, which were sent back to Åre. A Nimbra setup was used to take advantage of a lower-bandwidth circuit using JPEG 2000 to send the vision back. In addition, it carried the data to connect the vision mixer/switcher at Åre with the switch at Stockholm. This was the only point at which noticeable latency was introduced to the tune of around 4 frames.

Watch now!
Download the presentation
Speakers

Robert Erickson Robert Erickson
Strategic Account Manager Sports and Venues,
Grass Valley

Video: Working remotely in a crisis

We’ve perhaps all seen the memes that the ‘digital transformation’ of a company is not because of ‘leadership vision’, adapting to the competition, but rather ‘Covid-19’. Whilst this is both trite yet often true, there is value in understanding what broadcast companies have done to deal with the pandemic virus and COVID-19.

Robert Ambrose introduces and talks to our guests to find out how their companies have changed to accommodate remote working. First to speak is Jack Edney of The Farm Group, a post production company. They looked closely at the communication needed within the organisation, managing priorities of tasks and maintaining safety and resources. Jack shows how the stark difference between pre- and during- lockdown workflows seeing how much they are now remote. Jack explains how engaged his technical teams have been in making this work very quickly.

Brian Leonard from IMG has done much the same as IMG have moved towards remote working as they have changed from 300 people on site to around 3 people on site and everything else remote. Brian talks about how they’d expanded into a local building in order to make life easier in the earlier days. He then considers the pros and cons of being reliant on a significant freelance staff – that being the option of using their pre-existing equipment at home. Finally we look at how their computer-based SimplyLive production software allows them the immediate ability to remotely produce video.

OWNZONES is up next with Rick Phelps who gives a real example of a customer’s workflow which was on-premise showing the before and after diagrams for when this moved remotely. These workflows were extended into the cloud by, say, using proxies and editing using an EDL, encoding and amending metadata all in the cloud. Rick suggests that this is both a short-term trend but suggests much will remain like this in the longer-term.

Finally, Johan Sundström from Yle in Finland takes to the stand to give a point of view from a public broadcaster. He explains how
they have created guest booths near their main entrance connected to the new channels so facilitate low-contact interviews. Plexiglass is being installed in control rooms and people are doing their own makeup. He also highlights some apps which allow for remote contribution of audio. They are also using software-based mixers like the Tricaster plus Skype TX to keep producers connected and involved in their programmes. The session concludes with a Q&A.

Watch now!
Speakers

Jack Edney Jack Edney
Operations Director,
The Farm Group
Johan Sundström Johan Sundström
Head of Technology Vision,
Yle Finland
Rick Phelps Rick Phelps
Chief Commercial Officer,
OWNZONES
Brian Leonard Brian Leonard
Head of Engineering: Post and Workflows
IMG
Robert Ambrose Robert Ambrose
Managing Consultant,
High Green Media

Video: Live production: Delivering a richer viewing experience

How can large sports events keep an increasingly sophisticated audience entertained and fully engaged? The technology of sports coverage has pushed broadcasting forwards for many years and there’s no change. More than ever there is a convergence of technologies both at the event and delivering to the customers which is explored in this video.

First up is Michael Cole, a veteran of live sports coverage, now working for the PGA European Tour and Ryder Cup Europe. As the event organisers – who host 42 golfing events throughout the year – they are responsible for not just the coverage of the golf, but also a whole host of supporting services. Michael explains that they have to deliver live stats and scores to on-air, on-line and on-course screens, produce a whole TV service for the event-goers, deliver an event app and, of course run a TV compound.

One important aspect of golfing coverage is the sheer distances that video needs to cover. Formerly that was done primarily with microwave links and whilst RF still plays an important part of coverage with wireless cameras, the long distances are now done by fibre. However as this takes time to deploy each time and is hard to conceal in otherwise impeccably presented courses, 5G is seeing a lot of interest to validate its ability to cut rigging time and costs along with making the place look tidier in front of the spectators.

Michael also talks about the role of remote production. Many would see this an obvious way to go, but remote production has taken many years to slowly be adopted. Each broadcaster has different needs so getting the right level of technology available to meet everyone’s needs is still a work in progress. For the golfing events with tens of trucks, and cameras, Michael confirms that remote production and cloud is a clear way forward at the right time.

Next to talk is Remo Ziegler from VizRT who talks about how VizRT serves the live sports community. Looking more at the delivery aspect, they allow branding to be delivered to multiple platforms with different aspect ratios whilst maintaining a consistent look. Whilst branding is something that, when done well, isn’t noticed by viewers, more obvious examples are real-time, photo-realistic rendering for in-studio, 3D graphics. Remo talks next about ‘Augmented Reality’, AR, which can be utilised by placing moving 3D objects into a video making them move and look part of the picture as a way of annotating the footage to help explain what’s happening and to tell a story. This can be done in real time with camera tracking technology which takes into account the telemetry from the camera such as angle of tilt and zoom level to render the objects realistically.

The talk finishes with Chris explaining how viewing habits are changing. Whilst we all have a sense that the younger generation watch less live TV, Chris has the stats showing the change from people 66 years+ for whom ‘traditional content’ comprises 82% of their viewing down to 16-18 year olds who only watch 28%, the majority of the remainder being made up from SCOD and ‘YouTube etc.’.

Chris talks about the newer cameras which have improved coverage both by improving the technical ability of ‘lower tier’ productions but also for top-tier content, adding cameras in locations that would otherwise not have been possible. He then shows there is an increase in HDR-capable cameras being purchased which, even when not being used to broadcast HDR, are valued for their ability to capture the best image possible. Finally, Chris rounds back on Remote Production, explaining the motivations of the broadcasters such as reduced cost, improved work-life balance and more environmentally friendly coverage.

The video finishes with questions from the webinar audience.

Watch now!
Speakers

Michael Cole Michael Cole
Chief Technology Officer,
PGA European Tour & Ryder Cup Europe
Remo Ziegler Remo Ziegler
Vice President, Product Management, Sports,
Vizrt
Chris Evans Chris Evans
Senior Market Analyst,
Futuresource Consulting