Video: PTP Management and Media Flow Monitoring for All IP Infrastructures

Black and burst was always a ‘set and forget’ system. PTP, which replaces it, deserves active monitoring – and the same is true of your uncompressed media streams as we hear in this talk from the IP Showcase.

In professional essence-over-IP systems such as based on SMPTE ST 2110, timing needs to be rock solid. Thanks to asynchronous nature of IP many different flows can be carried across a network without having to be concerned with synchronization, but this presents a challenge in the production environment. To provide the necessary “genlock”, there is a need for a precise timing standard which is provided by SMPTE ST 2059 which defines the way broadcast signals relate to the IEEE 1588-2008 Precision Time Protocol, commonly referred to as PTPv2. This protocol is very different from analogue Black Burst and Tri-Level signals used in SDI world, so new tools and skills are required for fault finding.

In the first part of this presentation Thomas Gunkel from Skyline Communications focuses on the best practices to configure, monitor and manage PTP in an all-IP infrastructure covering the following:

  • PTP protocol vs reality (packet delay variation, network asymmetry, imperfect timestamping)
  • Increasing reliability of PTP (hardware timestamping, using QoS to prioritise PTP traffic, correcting timing intervals)
  • PTP device issues (grandmaster / boundary clock failure, loss of external reference, badly implemented BMCA)
  • PTP network issues (missing / corrupted event messages, increased packet delay variation, network asymmetry, multicast issues)
  • Automating PTP configuration (BMCA settings, messaging rate intervals, communication mode)
  • Automated PTP provisioning (detecting new PDP our devices using IS-04 or proprietary protocols, extracting end-to-end PTP topology with LLDP, applying standard PTP profiles)
  • PTP monitoring and control (monitor every single metric related to PTP like PTP offset, PTP mean path delay and multicast PTP network traffic for all grandmaster, master and slave devices, prevent slave devices from becoming master)

The second part of this video shows how to track uncompressed media flows in an ST 2110 IP-based media facility using a multi-layer approach and to how to pinpoint any potential issues using Network Monitoring System. Topics covered:

  • All IP flows vs SDI signals
  • Essentials for true orchestration (dynamically orchestrated resources and media services, monitoring / controlling infrastructure and media flows, automatic devices detection and provisioning)
  • Detecting issues (wrong DB entries for multicast essences, broadcast controller and SDN controller DBs out of sync, source not active, IGMP join / leave issues, SSM issues, network oversubscription)
  • Media flow tracking (reading cross point status from SDN controller, comparing this status with actual network topology, detecting “ghost” streams, using sFlow / NetFlow to track individual multicast flows)
  • Importance of true end-to-end SDN orchestration rather than SDN control (routing protocols which provides feedback)
  • All IP routing procedure (resolving multicast flow topology in combination with label management, checking source, checking destination route, presenting data for root cause analysis on each of these steps)

Watch now!

You can download the slides from here.

Speaker

Thomas Gunkel
Market Director Broadcast
Skyline Communications

Video: Monitoring and Measuring IP Media Networks

nn

The transition from point-to-point SDI based infrastructure to IP essence flows requires a very different approach to fault-finding. Although new IP diagnostic tools are already available on the market, engineers need combined broadcast and IT knowledge to fully understand the flow of video, audio and data across the switching fabric – including packet jitter, latency, and buffer over/underflows causing dropped packets.

In this video Michael Waidson from Tektronix presents methodologies involved in monitoring IP media networks. The following topics are covered:

  • Strategies for choosing IP Address, Port Number and Payload Type for easier identification of the streams
  • Troubleshooting basics (fibres and SFPs types, checking switch ports)
  • PTP synchronisation
  • Checking syntax of decoded streams (Layer 5 RTP, Marker Bit, Payload Type, Sequence Number, Timestamp)
  • Packet transmission (multiple paths, out of order packets in receiver, jitter, PIT Histogram)
  • Timing (reference clock, RTP timestamps, checking PTP lock, PTP and RTP offset, transmission traffic shape models)

You can download the slides here.

Speaker

Michael Waidson
Application Engineer
Tektronix

Video: Beyond SMPTE Time Code — the TLX Project

SMPTE Timecode, created in the 1970s, has been a tremendous success – so is there reason to reinvent it? SMPTE says yes, and SMPTE Fellow Peter Symes explains why.

SMPTE Timecode is in constant use globally in the broadcast industry, but also in many other industries. The standard SMPTE ST12 is still much he same as the first version of the standard, but it has been updated over the years to deal with new frame rates and to adapt to new technology. However there are limits to what it can achieve without being re-defined and some of the original technologies and restrictions that originally guided the way it was created are outdated and superseded.

Peter Symes explains the TLX project which is in progress to create a successor to ‘SMPTE Timecode’. The new requirements pushing the TLX project forward are moving away from ST 12’s audio-based format, supporting any frame rate, having no 24-hour duration limit and work with the legacy timecode.

TLX stands for Time Label Extensible and is delivering on its promise of an extensible standard – as so many are nowadays – and already has ways of working with ST 2059 (PTP synchronisation) and ST 2110 (for uncompressed video over IP).

Watch now, and find out more!

Speaker

Peter Symes Peter Symes
SMPTE Fellow

Video: Uncompressed Video over IP & PTP Timing

PTP and uncompressed video go hand in hand so this primer on ST 2022 and ST 2110 followed by a PTP deep dive is a great way to gain your footing in the uncompressed world.

In the longest video yet on The Broadcast Knowledge, Steve Holmes on behalf of Tektronix delivers two talks and a practical demo for the SMPTE San Francisco section where he introduces the reasons for and solutions to uncompressed video and goes through the key standards and technologies from ST 2022, those being -6 video and -7 seamless switching plus the major parts of ST 2110, those being timing, video, audio and metadata.

After that, at the 47 minute mark, Steve introduces the need for PTP by reference to black and burst, and goes on to explain how SMPTE’s ST2059 brings PTP into the broadcast domain and helps us synchronise uncompressed essences. He covered how PTP actually works, boundary clocks, Grandmaster/Master/Slave clocks and everything else you need to understand the system,

This video finishes with plenty of questions plus a look at the GUI of measurement equipment showing PTP in real life.

Watch now!
Speaker

Steve Holmes Steve Holmes
Senior Applications Engineer,
Tektronix