Video: As Time Goes by…Precision Time Protocol in the Emerging Broadcast Networks

How much timing do you need? PTP can get you timing in the nanoseconds, but is that needed, how can you transport it and how does it work? These questions and more are under the microscope in this video from RTS Thames Valley.

SMPTE Standards Vice President, Bruce Devlin introduces the two main speakers by reminding us why we need timing and how we dealt with it in the past. Looking back to the genesis of television, points out Bruce, everything was analogue and it was almost impossible to delay a signal at all. An 8cm, tightly wound coil of copper would give you only 450 nanoseconds of delay alternatively quartz crystals could be used to create delays. In the analogue world, these delays were used to time signals and since little could be delayed, only small adjustments were necessary. Bruce’s point is that we’ve swapped around now. Delays are everywhere because IP signals need to be buffered at every interface. It’s easy to find buffers that you didn’t know about and even small ones really add up. Whereas analogue TV got us from camera to TV within microseconds, it’s now a struggle to get below two seconds.

Hand in hand with this change is the change from metadata and control data being embedded in the video signal – and hence synchronised with the video signal – to all data being sent separately. This is where PTP, Precision Time Protocol, comes in. An IP-based timing mechanism that can keep time despite the buffers and allow signals to be synchronised.

 

 

Next to speak is Richard Hoptroff whose company works with broadcasters and financial services to provide accurate time derived from 4 satellite services (GPS, GLONASS etc) and the Swedish time authority RiSE. They have been working on the problem of delivering time to people who can’t put up antennas either because they are operating in an AWS datacentre or broadcasting from an underground car park. Delivering time by a wired network, Richard points out, is much more practical as it’s not susceptible to jamming and spoofing, unlike GPS.

Richard outlines SMPTE’s ST 2059-2 standard which says that a local system should maintain accuracy to within 1 microsecond. the JT-NM TR1001-1 specification calls for a maximum of 100ms between facilities, however Richard points out that, in practice, 1ms or even 10 microseconds is highly desired. And in tests, he shows that with layer 2, PTP unicast looping around western Europe was able to adhere to 1 microsecond, layer 3 within 10 microseconds. Over the internet, with a VPN Richard says he’s seen around 40 microseconds which would then feed into a boundary clock at the receiving site.

Summing up Richard points out that delivering PTP over a wired network can deliver great timing without needing timing hardware on an OPEX budget. On top of that, you can use it to add resilience to any existing GPS timing.

Gerard Philips from Arista speaks next to explain some of the basics about how PTP works. If you are interested in digging deeper, please check out this talk on PTP from Arista’s Robert Welch.

Already in use by many industries including finance, power and telecoms, PTP is base on IEEE-1588 allowing synchronisation down to 10s of nanoseconds. Just sending out a timestamp to the network would be a problem because jitter is inherent in networks; it’s part and parcel of how switches work. Dealing with the timing variations as smaller packets wait for larger packets to get out of the way is part of the job of PTP.

To do this, the main clock – called the grandmaster – sends out the time to everyone 8 times a second. This means that all the devices on the network, known as endpoints, will know what time it was when the message was sent. They still won’t know the actual time because they don’t know how long the message took to get to them. To determine this, each endpoint has to send a message back to the grandmaster. This is called a delay request. All that happens here is that the grandmaster replies with the time it received the message.

PTP Primary-Secondary Message Exchange.
Source: Meinberg [link]

This gives us 4 points in time. The first (t1) is when the grandmaster sent out the first message. The second (t2) is when the device received it. t3 is when the endpoint sent out its delay request and t4 is the time when the master clock received that request. The difference between t2 and t1 indicates how long the original message took to get there. Similarly, t4-t3 gives that information in the other direction. These can be combined to derive the time. For more info either check out Arista’s talk on the topic or this talk from RAVENNA and Meinberg from which the figure above comes.

Gerard briefly gives an overview of Boundary Clock which act as secondary time sources taking pressure off the main grandmaster(s) so they don’t have to deal with thousands of delay requests, but they also solve a problem with jitter of signals being passed through switches as it’s usually the switch itself which is the boundary clock. Alternatively, Transparent Clock switches simply pass on the PTP messages but they update the timestamps to take account of how long the message took to travel through the switch. Gerard recommends only using one type in a single system.

Referring back to Bruce’s opening, Gerard highlights the need to monitor the PTP system. Black and burst timing didn’t need monitoring. As long as the main clock was happy, the DA’s downstream just did their job and on occasion needed replacing. PTP is a system with bidirectional communication and it changes depending on network conditions. Gerard makes a plea to build a monitoring system as part of your solution to provide visibility into how it’s working because as soon as there’s a problem with PTP, there could quickly be major problems. Network switches themselves can provide a lot of telemetry on this showing you delay values and allowing you to see grandmaster changes.

Gerard’s ‘Lessons Learnt’ list features locking down PTP so only a few ports are actually allowed to provide time information to the network, dealing carefully with audio protocols like Dante which need PTP version 1 domains, and making sure all switches are PTP-aware.

The video finishes with Q&A after a quick summary of SMPTE RP 2059-15 which is aiming to standardise telemetry reporting on PTP and associated information. Questions from the audience include asking how easy it is to do inter-continental PTP, whether the internet is prone to asymmetrical paths and how to deal with PTP in the cloud.

Watch now!
Speakers

Bruce Devlin Bruce Devlin
Standards Vice President,
SMPTE
Gerard Phillips Gerard Phillips
Systems Engineer,
Arista
Richard Hoptroff Richard Hoptroff
Founder and CTO
Hoptroff London Ltd

Video: ST-2110 – Measuring and Testing the Data, Control and Timing Planes

An informal chat touching on the newest work around SMPTE ST-2110 standards and related specifications in today’s video. The industry’s leading projects are now tracking the best practices in IT as much as the latest technology in IP because simply getting video working over the network isn’t enough. Broadcasters demand solutions which are secure from the ground up, easy to deploy and have nuanced options for deployment.

Andy Rayner from Nevion talks to Prin Boon from Phabrix to understand the latest trends. Between then, Andy and Prin account for a lot of activity in standards work within standards and industry bodies such as SMPTE, VSF and JT-NM to name a but a few, so whom better to hear from regarding the latest thinking and ongoing work.

Andy starts by outlining the context of SMPTE’s ST-2110 suite of standards which covers not only the standards within 2110, but also the NMOS specifications from AMWA as well as the timing standards (SMPTE 2059 and IEEE 1588). Prin and Andy both agree that the initial benefit of moving to IT networking was benefiting from the massive network switches which now delivering much higher switching density than SDI ever could or would, now the work of 2110 projects is also tracking IT, rather than simply IP. By benefiting from the best practices of the IT industry as a whole, the broadcast industry is getting a much better product. Andy makes the point that broadcast-uses have very much pushed fabric manufacturers to implement PTP and other network technologies in a much more mature and scalable way than was imagined before.

Link to video

The focus of conversation now moves to the data, control and timing plane. The data plane contains the media essences and all of the ST 21110 standards. Control is about the AMWA/NMOS specs such as the IS-0X specs as well as the security-focused BCP-003 and JT-NM TR-1001. Timing is about PTP and associated guidelines.

Prin explains that in-service test and measurement is there to give a feeling for the health of a system; how close to the edge is the system? This is about early alerting of engineering specialists and then enable deep faultfinding with hand-held 2110 analysers. Phabrix, owned by Leader, are one of a number of companies who are creating monitoring and measurement tools. In doing this Willem Vermost observed that little of the vendor data was aligned so couldn’t be compared. This has directly led to work between many vendors and broadcasters to standardise the reported measurement data in terms of how it’s measured and how it is named and is being standardised under 2110-25. This will cover latency, video timing, margin and RTP offset.

More new work discussed by the duo includes the recommended practice, RP 2059-15 which is related to the the ST 2059 standards which apply PTP to media streams. As PTP, also known as IEEE 1588 has been updated to version 2.1 as part of the 2019 update, this RP creates a unified framework to expose PTP data in a structured manner and relies on RFC 8575 which, itself, relies on the YANG data modeling language.

We also hear about work to ensure that NMOS can fully deal with SMPTE 2022-7 flows in all the cases where a receiver is expecting a single or dual feed. IS-08 corner cases have been addressed and an all-encompassing model to develop against has been created as a reference.

Pleasingly, as this video was released in December, we are treated to a live performance of a festive song on piano and trombone. Whilst this doesn’t progress the 2110 narrative, it is welcomed as a great excuse to have a mine pie.

Watch now!
Speakers

Andy Rayner Andy Rayner
Chief Technologist,
Nevion
Prinyar Boon Prinyar Boon
Product Manager,
PHABRIX

Video: PTP in WAN Applications & Update on PTP v2.1

PTP is evolving as is our ability to use it over WANs. This video explains what’s new in PTP’s second revision and the evolving techniques of using PTP over a wide area network such as the internet. As PTP was built assuming the use of LANs, the longer and more unpredictable latency of WANs throws off the timing calculations, so what can be done to compensate?

In this video from RAVENNA, Andreas Hildebrand from ALC Networx takes us through PTP 2.1, the 2019 revision of PTP following on from PTP 2.0 in 2008 and from the original 1.0 in 2002. Famously, 2.0 and 1.0 were not compatible with each other which has caused problems with some hardware implementations of DANTE which were first written when 1.0 was the only edition. Importantly, Andreas highlights, version 2.1 is backwards compatible with version 2.0. If you’re looking for a PTP primer before digging in, have a look at this intro video from Daniel Boldt, Meinberg

Andreas explains the use of PTP profiles within both AES67 and SMTPTE 2110 which standardise some of the parameters for using PTP such as message frequency. Whilst they do have different defaults, there is an overlap between the two allowing for use of AES67 streams withing both an AES67 ecosystem and with a 2110-30 ecosystem. These overlaps are detailed in the joint AES and SMPTE document, AES-R16-2016.

“What’s new in PTP v2.1?” asks Andreas. Apart from clearer language, accuracy, flexibility and robustness have been enhanced.

Flexibility
Flexibility comes from the ability to mixed multicast and unicast messages. Announce and sync messages are still sent in multicast, but queries like delayresponse & delayrequest can now be sent unicast which provides better scalability as, for many scenarios, the reply never needs to go back to any other computers. Another example of flexibility is modular transparent clocks i.e. ones in SFPs. Another flexibility improvement is that it’s now possible to isolate profiles without using different PTP domain numbers. This is by adding a Profile ID called ‘SdoId’.

Robustness and Security
PTP now allows inter-domain interactions effectively allowing multiple GMs to vote onto a single ‘multi-domain clock’. This becomes a very robust clock as it’s created from the insight of three grandmasters. PTP v2.1 adds source integrity checking to allow identification of false, injected, messages. A long-needed improvement as security, even of a LAN, can’t be assumed nowadays.

Performance and Accuracy
Stats reporting has been added to PTP v2.1 allowing monitoring of the average, minimum, max and standard deviation of a number of metrics from the leader clock, delay metrics and message reception counters. Accuracy has been boosted to sub-nanosecond by the CERN-related White Rabbit Project which is an overall benefit to PTP even if sub-nanosecond timing isn’t needed.

Source: ALC NetworX

The second part of the video features Meinberg’s Daniel Boldt who discusses how to transmit PTP over the WAN. This is more challenging than a WAN because it’s more likely to be affected by queueing delays – particularly if the WAN in question is the internet. Queueing delays happen for a number of reasons but it all boils down to the fact the switches and routers often have to hold packets in a buffer, something that tends to happen more when there is more load. As such, this means that the delay is variable leading to varying jitter on the measurements.

Another problem often encountered is path changes where a switch happens in the network to divert the signal to a different path. Whilst this is a great way to route around problems, it does mean a sudden change in path length and therefore propagation delay. A conventional ping time may change from 100ms to 250ms in a second. This could have a big impact on the accuracy of a PTP timing signal if undetected.

Finally, the PTP timing algorithm assumes that it takes just as long, and no longer, to get the timing information from A to B as it does to get the follow-up reply from B to A. When one direction takes longer than the other, for instance when one direction is forced through a 100Mbps link rather than 1000Mbps, the PTP timing will have a constant timing error.

Source: Meinberg

Daniel explains that these issues can be mitigated by more thorough processing of the incoming packets. For instance, having a high-quality oscillator which can maintain an accurate frequency for a long time without external input is helpful. Having a local GM on GPS is another good way to avoid problems, in the cases when this is practical, where the WAN PTP becomes an ‘aide’ to timing rather than the authority. Finally, the ‘lucky packets’ technique is demonstrated.

Daniel explains that if you look at the delay of each packet incoming over, say, a two-second period, you can collect all the packets that, based on the timestamp, were lucky enough not to be delayed a lot. By discarding those very-delayed packets, the accuracy of the PTP signal becomes much higher and jitter can reduce, as we see from two case studies, by an order of magnitude.

Watch now!
Speakers

Andreas Hildebrand Andreas Hildebrand
RAVENNA Evangelist,
ALC NetworX
Daniel Boldt Daniel Boldt
Head of Software Development,
Meinberg

Video: Timing Requirements in Broadcast Applications

How does timing for AES67 and SMPTE ST 2110-30 work? All is revealed in this short video by Andrea Hildebrand who explains why we need PTP timing and how we relate the absolute time to the signals themselves.

In a network for audio streams, Andreas starts, we want all the streams to run on their native sample rate, use the same clock, but also want to have the possibility of multiple concurrent streams using different sample rates. Also, it’s important to have a deterministic end-to-end latency and that, when streams arrive, they should be suitably aligned. We achieve all of this by distributing time around the system. Audio has very high accuracy requirements of down to within 10 microseconds for typical 48KHz broadcast signals, but AES11 requires within 1 microsecond which is why the Precision Time Protocol, PTP is used which is defined by the standard IEEE 1588. For more information on PTP, check out our PTP back library

End devices run their own local clocks, synchronised to the PTP on the network. In charge of it all, there is a grandmaster locked to GPS which can then distribute to other secondary clocks which feed the end devices. The end device can generate a media clock from the PTP and by using PTP, different facilities can be kept in time with each other. All media is then timestamped with the time when they were generated. For advice on architecting PTP, have a listen to this talk from Arista’s Gerard Phillips.

RTP is used to carry professional media streams like AES. RTP builds on top of UDP to add the critical timing information we need. Namely, the timestamp but also the sequence number. Andreas looks at the structure of the RTP packet header to see where the timestamp and identifiers go. To follow up on the IT basics underpinning AES67 and SMPTE ST 2110, check out Ed Calverley’s presentation on the topic.

‘Profiles’ are required to link the time of day to media flows – to give the time some meaning in terms of the expected signal. The AES67 Media Profile does this for AES67 as an annexe in the standard. SMPTE use ST 2059 to define how to use AES67 as well as all the other essences it supports and relate them all back to an originating epoch time in 1970.

The talk finishes by looking at the overlap in timing specs for AES67 and ST 2110-30 (AES67 for 2110). For more information on how AES67 and ST 2110 work (and don’t work) together, watch Andreas’s ‘Deeper dive’ on the topic.

Watch now!
Speakers

Andreas Hildebrand Andreas Hildebrand
RAVENNA Evangelist
ALC NetworX