Video: Outlook on the future codec landscape

VVC has now been released, MPEG’s successor to HEVC. But what is it? And whilst it brings 50% bitrate savings over HEVC, how does it compare to other codecs like AV1 and the other new MPEG standards? This primer answers these questions and more.

Christian Feldmann from Bitmovin starts by looking at four of the current codecs, AVC, HEVC, VP9 and AV1. VP9 isn’t often heard about in traditional broadcast circles, but it’s relatively well used online as it’s supported on Android phones and brings bitrate savings over AVC. Google use VP9 on Youtube for compatible players and see a higher retention rate. Netflix and Twitch also use it. AV1 is also in use by the tech giants, though its use outside of those who built it (Netflix, Facebook etc.) is not yet apparent. Christian looks at the compatibility of the codecs, hardware decoding, efficiency and cost.

Looking now at the other upcoming MPEG codecs, Christian examines MPEG-5 Essential Video Coding (EVC) which has two profiles: Baseline and Main. The baseline profile only uses technologies which are old enough to be outside of patent claims. This allows you to use the codec without the concern that you may be asked for a fee from a patent holder who comes out of the woodwork. The main profile, however, does have patented technology and performs better. Businesses which wish to use this codec can then pay licences but if an unexpected patent holder appears, each individual tool in the codec can be disabled, allowing you to protect continue using, albeit without that technology. Whilst it is a shame that patents are so difficult to account for, this shows MPEG has taken seriously the situation with HEVC which famously has hundreds of licensable patents with over a third of eligible companies not part of a patent pool. EVC performs 32% better than AVC using the baseline profile and 25% better than HEVC with the main profile.

Next under the magnifying glass is Low Complexity Enhancement Video Coding (LCEVC). We’ve already heard about this on The Broadcast Knowledge from Guido, CEO of V-Nova who gave a deeper look at Demuxed 2019 and more recently at Streaming Media West. Whilst those are detailed talks, this is a great overview of the technology which is actually a hybrid approach to encoding. It allows you to take any existing codec such as AVC, AV1 etc. and put LCEVC on top of it. Using both together allows you to run your base encoder at a lower resolution (say HD instead of UHD) and then deliver to the decoder this low-resolution encode plus a small stream of enhancement information which the decoder uses to bring the video back up to size and add back in the missing detail. The big win here, as the name indicates, is that this method is very flexible and can take advantage of all sorts of available computing power in embedded technology as and in servers. In set-top boxes, parts of the SoC which aren’t used can be put to use. In phones, both the onboard HEVC decoding chip and the CPU can be used. It’s also useful in for automated workflows as the base codec stream is smaller and hence easier to decode, plus the enhancement information concentrates on the edges of objects so can be used on its own by AI/machine learning algorithms to more readily analyse video footage. Encoding time drops by over a third for AVC and EVC.

Now, Christian looks at the codec-du-jour, Versatile Video Codec (VVC), explaining that its enhancements over HEVC come not just from bitrate improvements but techniques which better encode screen content (i.e. computer games), allow for better 360 degree video and reduce delay. Subjective results show up to 50% improvement. For more detail on VVC, check out this talk from Microsoft’s Gary Sullivan.

The talk finishes with answers so audience questions: Which will be the winner, what future device & hardware support will be and which is best for real-time streaming.

Watch now!
Speakers

Christian Feldmann Christian Feldmann
Team lead, Encoding,
Bitmovin

Video: AV1 – A Reality Check

Released in 2018, AV1 had been a little over two years in the making at the Alliance of Open Media founded by industry giants including Google, Amazon, Mozilla, Netflix. Since then work has continued to optimise the toolset to bring both encoding and decoding down to real-world levels.

This talk brings together AOM members Mozilla, Netflix, Vimeo and Bitmovin to discus where AV1’s up to and to answer questions from the audience. After some introductions, the conversation turns to 8K. The Olympics are the broadcast industry’s main driver for 8K at the moment, though it’s clear that Japan and other territories aim to follow through with further deployments and uses.

“AV1 is the 8K codec of choice” 

Paul MacDougall, Bitmovin
 CES 2020 saw a number of announcements like this from Samsung regarding AV1-enabled 8K TVs. In this talk from Google, Matt Frost from Google Chrome Media explains how YouTube has found that viewer retention is higher with VP9-delivered videos which he attributes to VP9’s improved compression over AVC which leads to quicker start times, less buffering and, often, a higher resolution being delivered to the user. AV1 is seen as providing these same benefits over AVC without the patent problems that come with HEVC.

 
It’s not all about resolution, however, points out Paul MacDougall from BitMovin. Resolution can be useful, for instance in animations. For animated content, resolution is worth having because it accentuates the lines which add intelligibility to the picture. For some content, with many similar textures, grass, for instance, then quality through bitrate may be more useful than adding resolution. Vittorio Giovara from Vimeo agrees, pointing out that viewer experience is a combination of many factors. Though it’s trivial to say that a high-resolution screen of unintended black makes for a bad experience, it is a great reminder of things that matter. Less obviously, Vittorio highlights the three pillars of spatial, temporal and spectral quality. Temporal refers to upping the bitrate, spatial is, indeed, the resolution and spectral refers to bit-depth and colour-depth know as HDR and Wide Colour Gamut (WCG).

Nathan Egge from Mozilla acknowledges that in their 2018 code release at NAB, the unoptimized encoder which was claimed by some to be 3000 times slower than HEVC, was ’embarrassing’, but this is the price of developing in the open. The panel discusses the fact that the idea of developing compression is to try out approaches until you find a combination that work well. While you are doing that, it would be a false economy to be constantly optimising. Moreover, Netflix’s Anush Moorthy points out, it’s a different set of skills and, therefore, a different set of people who optimise the algorithms.

Questions fielded by the panel cover whether there are any attempts to put AV1 encoding or decoding into GPU. Power consumption and whether TVs will have hardware or software AV1 decoding. Current in-production AV1 uses and AVC vs VVC (compression benefit Vs. royalty payments).

Watch now!
Speakers

Vittorio Giovara Vittorio Giovara
Manager, Engineering – Video Technology
Vimeo
Nathan Egge Nathan Egge
Video Codec Engineer,
Mozilla
Paul MacDougall Paul MacDougall
Principal Sales Engineer,
Bitmovin
Anush Moorthy Anush Moorthy
Manager, Video and Image Encoding
Netflix
Tim Siglin Tim Siglin
Founding Executive Director
Help Me Stream, USA

Video: Futuristic Codecs and a Healthy Obsession with Video Startup Time

These next 12 months are going to see 3 new MPEG standards being released. What does this mean for the industry? How useful will they be and when can we start using them? MPEG’s coming to the market with a range of commercial models to show it’s learning from the mistakes of the past so it should be interesting to see the adoption levels in the year after their release. This is part of the second session of the Vienna Video Tech Meetup and delves into startup time for streaming services.

In the first talk, Dr. Christian Feldmann explains the current codec landscape highlighting the ubiquitous AVC (H.264), UHD’s friend, HEVC (H.265), and the newer VP9 & AV1. The latter two differentiate themselves by being free to used and are open, particularly AV1. Whilst slow, both the latter are seeing increasing adoption in streaming, but no one’s suggesting that AVC isn’t still the go-to codec for most online streaming.

Christian then introduces the three new codecs, EVC (Essential Video Coding), LCEVC (Low-Complexity Enhancement Video Coding) and VVC (Versatile Video Coding) all of which have different aims. We start by looking at EVC whose aim is too replicate the encoding efficiency of HEVC, but importantly to produce a royalty-free baseline profile as well as a main profile which improves efficiency further but with royalties. This will be the first time that you’ve been able to use an MPEG codec in this way to eliminate your liability for royalty payments. There is further protection in that if any of the tools is found to have patent problems, it can be individually turned off, the idea being that companies can have more confidence in deploying the new technology.

The next codec in the spotlight is LCEVC which uses an enhancement technique to encode video. The aim of this codec is to enable lower-end hardware to access high resolutions and/or lower bitrates. This can be useful in set-top boxes and for online streaming, but also for non-broadcast applications like small embedded recorders. It can achieve a light improvement in compression over HEVC, but it’s well known that HEVC is very computationally heavy.

LCEVC reduces computational needs by only encoding a lower resolution version (say, SD) of the video in a codec of your choice, whether that be AVC, HEVC or otherwise. The decoder will then decode this and upscale the video back to the original resolution, HD in this example. This would look soft, normally, but LCEVC also sends enhancement data to add back in the edges and detail that would have otherwise been lost. This can be done in CPU whilst the other decoding could be done by the dedicated AVC/HEVC hardware and naturally encoding/decoding a quarter-resolution image is much easier than the full resolution.

Lastly, VVC goes under the spotlight. This is the direct successor to HEVC and is also known as H.266. VVC naturally has the aim of improving compression over HEVC by the traditional 50% target but also has important optimisations for more types of content such as 360 degree video and screen content such as video games.

To finish this first Vienna Video Tech Meetup, Christoph Prager lays out the reasons he thinks that everyone involved in online streaming should obsess about Video Startup Time. After defining that he means the time between pressing play and seeing the first frame of video. The longer that delay, the assumption is that the longer the wait, the more users won’t bother watching. To understand what video streaming should be like, he examines Spotify’s example who have always had the goal of bringing the audio start time down to 200ms. Christophe points to this podcast for more details on what Spotify has done to optimise this metric which includes activating GUI elements before, strictly speaking, they can do anything because the audio still hasn’t loaded. This, however, has an impact of immediacy with perception being half the battle.

“for every additional second of startup delay, an additional 5.8% of your viewership leaves”

Christophe also draws on Akamai’s 2012 white paper which, among other things, investigated how startup time puts viewers off. Christophe also cites research from Snap who found that within 2 seconds, the entirety of the audience for that video would have gone. Snap, of course, to specialise in very short videos, but taken with the right caveats, this could indicate that Akamai’s numbers, if the research was repeated today, may be higher for 2020. Christophe finishes up by looking at the individual components which go towards adding latency to the user experience: Player startup time, DRM load time, Ad load time, Ad tag load time.

Watch now!
Speakers

Christian Feldmann Dr. Christian Feldmann
Team Lead Encoding,
Bitmovin
Christoph Prager Christoph Prager
Product Manager, Analytics
Bitmovin
Markus Hafellner Markus Hafellner
Product Manager, Encoding
Bitmovin

Video: All you need to know about video KPIs

KPIs are under the microscope as Milan’s Video Tech meet up fights against the pandemic by having its second event online and focused on measuring, and therefore improving, streaming services.

Looking at ‘Data-Driven Business Decision Making‘, Federico Preli, kicks off the event looking at how to harness user data to improve the user experience. He explains this using Netflix’s House of Cards as an example. Netflix commissioned 2 seasons of House of Cards based not on a pilot, but on data they already have. They knew the British version had been a hit on the platform, they could see that the people who enjoyed that, also watched other films from Kevin Spacey or David Fincher (the director of House of Cards). As such, this large body of data showed that, though success was not guaranteed, there was good cause to expect people to be receptive to this new programme.

Federico goes on to explain how to balance recommendations based upon user data. A balance is necessary, he explains, to avoid a bubble around a viewer where the same things keep on getting recommended and not to exaggerate someone’s interests at the detriment of nuance and not representing the less prominent predilections. He outlines the 5 parts of a balanced recommendations experience: Serendipity, diversity, coverage, fairness & trust. Balancing these equally will provide a rounded experience. Finally, Federico discusses how some platforms may choose to under invest in some of these due to the nature of their platforms. Relevance, for instance, may be less important for an ultra-niche platform where everything has relevance.

Performance Video KPIs at the Edge‘ is the topic of Luca Moglia‘s talk. A media solutions engineer from Akamai, he looks at how to derive more KPI information from logs at the edge. Whilst much data comes from a client-side KPI, data directly reported by the video player itself to the service. Client-side information is vital as only the client knows on which button you clicked, for instance and how long you spent in certain parts of the GUI. But in terms of video playback, there is a lot to be understood by looking at the edge, the part of the CDN which is closest to the client.

One aspect that client-side reporting doesn’t cover is use of the platform by clients which aren’t fully supported meaning they report back less information. Alternatively, for some services, it may be possible to access them with clients which don’t report at all. Depending on how reporting is done, this could be blocked by ad blockers or DNS rules. As such, this is an important gap which can be largely filled by analysis of CDN logs. This allows you to enhance the data analysis done elsewhere and validate it.

Luca gives examples of KPIs that can be measured or inferred from the edge, such as ‘hand-waving latency’ which can be understood from the edge-to-origin latency and time to manifest. He also shows an example graph analysing the number of segments served at the edge within the segment duration time. This helps indicate how many streams weren’t rebuffering. Overall, Luca concludes, analysing data from the edge helps track improvements, gives you better visibility on consumer/global events and allows you to enhance the performance of the platform.

Bitmovin’s Andrea Fassina covers ‘Client KPIs – Five Analytics Metrics That Matter‘ which he summarises at the beginning of his talk ahead of explaining each individually. ‘Impressions & Total Hours Watched’ is first. This metric has really shown its importance as the SARS-CoV-2 pandemic has rolled around the globe. Understanding how much more people are watching is important in understanding how your platform is reacting. After all, if a platform is struggling this could be for many reasons that are correlated with, but not because of, more hours streamed. For instance, in boxing matches, it’s often the payment system which struggles before the streaming does.

Video startup time is next. Andrea explains the statistics of lost viewers as your time-to-play increases. You can look at startup time across each device and see where the low-hanging fruit for improvements and prioritise your work. This metric can be extended to ad playing and DRM load time which need to be brought into the overall equation.

Third is Video Bitrate Heatmap which allows you to see which type of chunks are most used and, similarly, which rungs on your ABR ladder aren’t needed (or could be improved.) The fourth KPI discussed is Error Types and Codes. Analysing codes generated can give you early warning to issues and allow you to understand whether you suffer more problems than the industry average (6.6%) but also proactively talk to connectivity providers to reduce problems. Lastly, Andrea explains how Rebuffering percentage helps understand where there are gaps in your service in terms of devices/apps which are particularly struggling.

Source: Andrea Fassina, Bitmovin

Video Quality Metrics‘ rounds off the session as Fabio Sonnati tackles the tricky problem of how to know what quality of video each viewer is seeing. Given that the publisher has each and every chunk and can view them, many would think this would mean you could see exactly what each stream would look like. But a streaming service can only see what each chunk looks like on their device in their environment. When you view a chunk encoded at 1080i on an underpowered SD device, what does the user actually see and would they have been better receiving a lower resolution, lower bitrate chunk instead?

In order to understand video quality, Fabio briefly explains some objective metrics such as VMAD, SSIM and PSNR. He then discusses the way that Sky Italia have chosen to create their own metric by combining metrics, subjective feedback and model training. The motivation to do this, to tailor your metric to the unique issues that your platform has to contend with. This metric, called SynthEYE, has been expanded to be able to run without a reference – i.e. it doesn’t require the source as well as the encoded version. Fabio shows results of how well SynthEYE Absolute predicts VMAF and MOS scores. He concludes by saying that using an absolute metric is useful because it gives you the ability to analyse chunk-by-chunk and then match that up with resolution and other analytics data to better understand the performance of the platform.

The session concluded with 20 minutes of Q&A

Watch now!
Speakers

Luca Moglia Luca Moglia
Media Solutions Engineer,
Akamai
Andrea Fassina Andrea Fassina
Developer Evangelist,
Bitmovin
Fabio Sonnati Fabio Sonnati
Media Architect and
Encoding & Streaming Specialist
Federico Preli Federico Preli
Senior Solution Architect,
ContentWise
Stefano Morello Moderator: Stefano Morello
Senior Sales Engineer,
ContentWise