Video: Introduction to IPMX

The Broadcast Knowledge has documented over 100 videos and webinars on SMPTE ST 2110. It’s a great suite of standards but it’s not always simple to implement. For smaller systems, many of the complications and nuances don’t occur so a lot of the deeper dives into ST 2110 and its associated specifications such as NMOS from AMWA focus on the work done in large systems in tier-1 broadcasters such as the BBC, tpc and FIS Skiing for SVT.

ProAV, the professional end of the AV market, is a different market. Very few companies have a large AV department if one at all. So the ProAV market needs technologies which are much more ‘plug and play’ particularly those in the events side of the market. To date, the ProAV market has been successful in adopting IP technology with quick deployments by using heavily proprietary solutions like ZeeVee, SDVoE and NDI to name a few. These achieve interoperability by having the same software or hardware in each and every implementation.

IPMX aims to change this by bringing together a mix of standards and open specifications: SMPTE ST 2110, NMOS specs and AES. Any individual or company can gain access and develop a service or product to meet them.

Andreas gives a brief history of IP to date outlining how AES67, ST 2110, ST 2059 and the IS specifications, his point being that the work is not yet done. ProAV has needs beyond, though complementary to, those of broadcast.

AES67 is already the answer to a previous interoperability challenge, explains Andreas, as the world of audio over IP was once a purely federated world of proprietary standards which had no, or limited, interoperability. AES67 defined a way to allow these standards to interoperate and has now become the main way audio is moved in SMPTE 2110 under ST 2110-30 (2110-31 allows for AES3). Andreas explains the basics of 2110, AES, as well as the NMOS specifications. He then shows how they fit together in a layered design.

Andreas brings the talk to a close looking at some of the extensions that are needed, he highlights the ability to be more flexible with the quality-bandwidth-latency trade-off. Some ProAV applications require pixel perfection, but some are dictated by lower bandwidth. The current ecosystem, if you include ST 2110-22’s ability to carry JPEG-XS instead of uncompressed video allows only very coarse control of this. HDMI, naturally, is of great importance for ProAV with so many HDMI interfaces in play but also the wide variety of resolutions and framerates that are found outside of broadcast. Work is ongoing to enable HDCP to be carried, suitably encrypted, in these systems. Finally, there is a plan to specify a way to reduce the highly strict PTP requirements.

Watch now!
Speaker

Andreas Hildebrand Andreas Hildebrand
Evangelist,
ALC NetworX

Video: SMPTE Technical Primers

The Broadcast Knowledge exists to help individuals up-skill whatever your starting point. Videos like this are far too rare giving an introduction to a large number of topics. For those starting out or who need to revise a topic, this really hits the mark particularly as there are many new topics.

John Mailhot takes the lead on SMPTE 2110 explaining that it’s built on separate media (essence) flows. He covers how synchronisation is maintained and also gives an overview of the many parts of the SMPTE ST 2110 suite. He talks in more detail about the audio and metadata parts of the standard suite.

Eric Gsell discusses digital archiving and the considerations which come with deciding what formats to use. He explains colour space, the CIE model and the colour spaces we use such as 709, 2100 and P3 before turning to file formats. With the advent of HDR video and displays which can show bright video, Eric takes some time to explain why this could represent a problem for visual health as we don’t fully understand how the displays and the eye interact with this type of material. He finishes off by explaining the different ways of measuring the light output of displays and their standardisation.

Yvonne Thomas talks about the cloud starting by explaining the different between platform as a service (PaaS), infrastructure as a service (IaaS) and similar cloud terms. As cloud migrations are forecast to grow significantly, Yvonne looks at the drivers behind this and the benefits that it can bring when used in the right way. Using the cloud, Yvonne shows, can be an opportunity for improving workflows and adding more feedback and iterative refinement into your products and infrastructure.

Looking at video deployments in the cloud, Yvonne introduces video codecs AV1 and VVC both, in their own way, successors to HEVC/h.265 as well as the two transport protocols SRT and RIST which exist to reliably send video with low latency over lossy networks such as the internet. To learn more about these protocols, check out this popular talk on RIST by Merrick Ackermans and this SRT Overview.

Rounding off the primer is Linda Gedemer from Source Sound VR who introduces immersive audio, measuring sound output (SPL) from speakers and looking at the interesting problem of forward speakers in cinemas. The have long been behind the screen which has meant the screens have to be perforated to let the sound through which interferes with the sound itself. Now that cinema screens are changing to be solid screens, not completely dissimilar to large outdoor video displays, the speakers are having to move but now with them out of the line of sight, how can we keep the sound in the right place for the audience?

This video is a great summary of many of the key challenges in the industry and works well for beginners and those who just need to keep up.

Watch now!
Speakers

John Mailhot John Mailhot
Systems Architect for IP Convergence,
Imagine Communications
Eric Gsell Eric Gsell
Staff Engineer,
Dolby Laboratories
Linda Gedemer, PhD Linda Gedemer, PhD
Technical Director, VR Audio Evangelist
Source Sound VR
Yvonne Thomas Yvonne Thomas
Strategic Technologist
Digital TV Group

Video: What’s New in NMOS? – A Tutorial on the Latest in Video over IP Control and Security

The Networked Media Open Specifications (NMOS) have been developed to provide a control and management layer along side the SMPTE ST 2110 transport layer. The idea behind NMOS was to deliver an open specification to provide the software layers that abstract a lot of complexities of ST 2110 and make it easy to interface with any control system.

The NMOS family of specifications began with projects for Discovery & Registration, Device Connection Management and Network Control, but has grown to include many other important subjects such as Event & Tally, Audio Channel Mapping and Interoperable Security.

In this video, Jed Deame discusses the latest advancements including IS-08, IS-09, BCP-002, BCP-003 and IS-10. These additions allows NMOS to surpass the level of control provided in SDI while also adding a layer of security.

The following Interface Specifications and Best Current Practices are presented:

  • IS-04 (Registration and Discovery) – new features: support for GPI over Ethernet (IS-07) and authorisation signalling for security layers BCP-003-02
  • IS-05 (Connection Management) – new features: MQ Telemetry Transport and WebSocket Transport, support for supplementary externally defined parameters
  • IS-08 (Audio Mapping) – audio routing / shuffling facility
  • IS-09 (System Resources) – System ID, server priority, security with HTTPS support, advertisement of system resources such as RDS (Registration and Discovery Server)
  • BCP-002 (Grouping) – uses tag resources in IS-04 in order to achieve a natural groups of senders and receivers (e.g. to tie audio, video and metadata)
  • BCP-003-01 (Security) – uses Transport Layer Security (TLS) in order to encrypt communications between API servers and their clients
  • BCP-003-02 (Security) – covers client authorization for the NMOS APIs
  • IS-10 (Authorisation API) – accompanies the BCP-003-02 specification to restrict what users are authorized to change in an NMOS system (core technologies: PKI, HTTPS, REST, JSON, Oauth 2.0 and JWT)

The presentation finishes with the customer case study – secure KVM all over an IP network.

You can download the slides from here.

Watch now!

You might also be interested in the following videos we have published on The Broadcast Knowledge:

Speaker

Jed Deame
CEO
Nextera Video

Video: TR-1001 Replacing Video By Spreadsheet

Here to kill the idea of SDNs – Spreadsheet Defined Networks – is TR-1001 which defines ways to implement IP-based media facilities avoiding some typical mistakes and easing the support burden.

From the JT-NM (Joint Taskforce – Networked Media), TR-1001 promises to be a very useful document for companies implementing ST-2110 or any video-over-IP network Explaining what’s in it is EEG’s Bill McLaughlin at the VSF’s IP Showcase at NAB.

This isn’t the first time we’ve written about TR-1001 at The Broadcast Knowledge. Previously, Imagine’s John Mailhot has dived in deep as part of a SMPTE standards webcast. Here, Bill takes a lighter approach to get over the main aims of the document and adds details about recent testing which happened across several vendors.

Bill looks at the typical issues that people find when initially implementing a system with ST-2110 devices and summarises the ways in which TR-1001 mitigates these problems. The aim here is to enable, at least in theory, many nodes to be configured in an automatic and self-documenting way.

Bill explains that TR-1001 covers timing, discovery and connection of devices plus some of configuration and monitoring. As we would expect, ST-2110 itself defines the media transport and also some of the timing. Work is still to be done to help TR-1001 address security aspects.

Speaker

Bill McLaughlin Bill McLaughlin
VP Product Development,
EEG Enterprises